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 Abstract 

Automated plant disease detection has gained traction in precision agriculture for 
its potential to boost crop yields and reduce manual effort. This study explores 
vegetable disease classification using convolutional neural networks (CNNs), 
utilizing a dataset of over 20,000 images across 15 disease categories and healthy 
classes. Four models were evaluated: a custom CNN, VGG19, ResNet50, and 
Xception. The custom CNN achieved 87.50% accuracy, demonstrating the 
potential of lightweight models for resource-limited scenarios. VGG19 performed 
better with 89.52%, while ResNet50 outperformed all with 94.86% accuracy and 
strong precision, recall, and F1 score. Xception underperformed, emphasizing the 
importance of model architecture and tuning. The results highlight the effectiveness 
of transfer learning, especially with deep models like ResNet50, and the viability of 
custom CNNs in constrained environments. Future work will explore class-specific 
errors, edge-device optimization, and techniques to address class imbalance for 
improved robustness. 
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INTRODUCTION 
Agriculture remains a mainstay for many of the 
developing economies today (Newman et al., 2020) 
and is incredibly important for the food security of 
global population – which is projected to reach 10 
billion by 2050 according to United Nations 2019 
report. Many farmers from these developing 
countries, particularly those working in remote 
regions, have limited access to reliable information on 
disease detection and prevention (Babu & 
Glendenning, 2019). This forces them to make use of 
their observation and personal experience alone to 
identify diseases, without the use of scientific 
information, which can cause significant crop damage 
and low crop yield overall – as indicated in the study 
by Adam, Sindi, & Badstue (2015) of potato farmers 
in Tanzania.  
In today’s evolving agricultural landscape, there is an 
increasing need for quick and precise disease 

detection information. Rapid changes in climate and 
weather pattern are causing new variants of plant 
diseases to emerge (Gautam & Kumar, 2013), which 
could make traditional methods of disease detection 
impractical for crop protection. Farmers now require 
efficient technological instruments, backed by 
machine learning (ML) and deep learning (DL) 
algorithms, to quickly detect and treat plant illnesses, 
since the accuracy of disease categorization and 
treatment might be compromised by human error in 
traditional methods of observation (Sharma et al., 
2021) (Pandeya et al., 2025).  
With the rapid evolution of sensing and 
communication technology, integrating mobile 
devices, drones, and Internet of Things (IoT) 
platforms is transforming plant health monitoring by 
enabling real time data collection and processing 
directly in the field. Sensor equipped smartphones 
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coupled with lightweight CNN inference engines now 
allow farmers to receive instantaneous alerts on leaf 
disease presence, even in remote or resource limited 
settings. Recent reviews highlight how IoT enabled 
deep learning architectures streamline disease 
classification and reduce reliance on manual 
inspection (Riyanto et al., 2025; Wulandari et al., 
2024). These systems not only improve disease 
detection accuracy but also minimise pesticide misuse 
through precise diagnosis, aligning with sustainability 
goals in smart agriculture (Mueller et al., 2024). 
Despite these advances, a significant gap remains in 
identifying which CNN architectures deliver optimal 
performance under varied agricultural constraints 
such as low quality images, unbalanced datasets, and 
limited hardware. Ferentinos (2018) demonstrated 
that basic CNN architectures could reach accuracy 
levels above 99% on large, curated datasets like 
PlantVillage; however, their generalisability to real 
world multi crop scenarios remains questionable. A 
systematic review by Pacal et al. (2024) emphasised 
that performance is highly dependent on model 
depth, data augmentation, and training 
configurations, suggesting the need for comparative 
evaluations across architectures. Motivated by this, the 
current study investigates the robustness of both 
custom and pretrained CNNs in detecting diseases in 
potato, tomato, and pepper crops. 
To tackle the challenges discussed above, this study 
will examine and evaluates various DL backed 
methods under convolutional neural networks 
(CNNs) for detecting plant diseases. These 
approaches include some notable pretrained CNN 
models including VGG19, ResNet50, Xception, and 
a custom CNN model. We will be testing these 
models to detect leaf diseases in leaves of Potato, 
Tomato and Pepper crops only.  Our objective here is 
to demonstrate the robustness and efficiency of CNN 
models through performance evaluation based on 
four parameters: accuracy score, F1 score and training 
time. This evaluation may help us understand the 
strengths and limitations of these established CNN 
models in plant disease detection. 
 
Literature Review  
CNNs are basically DL algorithms which can be 
trained on large volume of input datasets holding 

millions of parameters in the form of 2D data files, 
such as images, audio and video files etc., and they can 
be mathematically combined or convolved to generate 
desired results (Chauhan, Ghanshala, & Joshi, 2018).   
As per Alzubaidi et al. (2021), the architectural design 
of CNNs allows for automatic and adaptive learning 
of spatial features with the support of 
backpropagation that leads to improved model 
accuracy. This is made possible due to the presence of 
several building elements which include convolution 
layers, pooling layers, and fully connected layers (Ibid). 
The neural networks of CNN are now among the 
most widely DL models in the field of computer 
vision. CNNs holds competitive advantage over 
traditionally dominant Recurrent Neural Networks 
(RNNs) in dealing with sequential data (like image 
and video files) due to their context-sensitive position-
awareness mechanism, which includes cross-attention 
and self-attention (Chen & Wu, 2017). High 
dimensional image / video data can be efficiently 
processed by weight sharing mechanism of CNNs, 
wherein the number of parameters are reduced to 
enhance generalization and mitigate overfitting 
(Alzubaidi et al., 2021).  Parallel computation is also 
possible under CNN architecture that leads to 
significantly better performance while handling 
computer vision related tasks (Chen & Wu, 2017). 
These distinctive features in CNN’s architecture have 
proved to be effective in obtaining high accuracy 
results in the tasks related to image recognition, 
detection and classification (Chauhan, Ghanshala, & 
Joshi, 2018).    
CNN models do come with their own set of 
limitations. One of the chief concerns with CNNs is 
that they require significantly more computational 
power and memory allocation compared to RNNs 
(Alzubaidi et al., 2021).  The high computational cost 
partly comes with the need of the models to be trained 
on huge labelled datasets for effective training and 
better outcome (Ahmed et al., 2023). Additionally, 
CNN models have an inherent deficiency rotational 
and translational invariance, as pointed out by 
Alzubaidi et al. (2021), which may cause these models 
to struggle in recognizing objects in different positions 
and orientation. These challenges, though stern, can 
be addressed through various mitigating methods – 
such as deploying pre-trained CNN models (transfer 
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learning), using data augmentation, developing 
advanced custom built CNN models, and / or 
incorporating unsupervised or semi-supervised 
learning for model training (Ibid).     
CNNs ability to automatically extract features from 
images with high accuracy makes them good fit for 
different image classification tasks, such as disease 
detection in agricultural plants (Tabassum et al., 
2023). They can also be easily integrated with mobile 
and web applications (Goh et al., 2022). Benefitting 
from these properties, A. A. Ahmed & Reddy (2021), 
Tembhurne et al. (2023), Tyagi et al. (2023) and 
Iftikhar et al. (2024) among several others have 
developed and tested different plant disease detection 
mobile apps for farmers.  
As discussed above; to overcome the computational 
cost associated with CNN, most researchers and 
developers rely on pre-trained CNN models for 
detecting plant diseases. Popular among them are 
VGG19, ResNet50 and Xception. 
VGG19 model was developed at Oxford University’s 
Department of Engineering Sciences and is widely 
used for image recognition and classification tasks 
(Wen, Li, Li, & Gao, 2019). It has a deep architecture 
comprising of a total of 19 layers – 16 convolutional 
layers and 3 fully connected layers – allowing for 
capturing of distinctive and complex features of leaves 
that helps in accurately detecting disease symptoms in 
plants (Paul et al., 2023). Recent research studies on 
different plant leaves have clearly demonstrated this 
ability of VGG19.  Bj et al. (2024) effectively used 
VGG19 model to successfully detect and classify 
diseases in Grape leaves with accuracy of 98%. Kumar 
et al. (2024) deployed the same model for disease 
detection in Apple and received a result of 98.71%.  
Vadivel et al. (2022) obtained an accuracy of 99% in 
their application of model on Potato leaves. The main 
limitation of VGG19, however, is that it requires 
comparatively larger computational power, more 
memory and longer training time (Rodríguez et al., 
2023).  
ResNet50 is a 50 layered CNN model based on 
residual learning framework that includes skip or 
shortcut connections, enabling it to mitigate the 
vanishing gradient problem in deep networks since 
gradients are allowed to flow through more fluidly 
during training of data (Rani & Gupta, 2024). One of 

the main advantages of this model is its pre-trained 
weights which lessens the need for extensive data 
training, hence making it more adaptable to new 
datasets while yielding high results (Ibid). The model 
has been used in various scientific studies to detect 
and identify disease symptoms in various plants. One 
such study by Bharti et al. (2024) on Potato leaves 
provided an accuracy of 98.36% in correctly 
identifying diseases in the plant. A similar study for 
Tomato leaves by Upadhyay & Saxena (2024) 
achieved an accuracy of over 95%. Hindarto (2024) 
applied this model to obtain an astonishing 99.16% 
accuracy in identifying and classifying various diseases 
in Mango leaves. ResNet50’s high performance, 
however, is dependent on availability of high-quality 
images and diversity of data set which can limit its 
applicability in real-time agricultural scenarios where 
one may not be to ensure these conditions (Hindarto, 
2024) (Upadhyay & Saxena, 2024). 
Xception model of CNN is basically a linear stack of 
depth-wise separable convolution layers that enables 
learning with comparatively less parameters than 
other pre-trained CNN models (Chollet, 2017). 
Overall, there are 36 convolution layers structured 
into entry, middle and exit flows (Ibid). These 
structural characteristics enhance Xception’s ability to 
identify and find intricate features from leaves of a 
diseased plant (Pantha & Koju, 2024). Wulandari et 
al. (2024) used Xception in their study of health 
classification of Chili leaves and achieved an accuracy 
of 91%. A 97.1% accuracy was obtained in research 
conducted by Sunyoto et al. (2023) on Potato disease 
classification using Xception model. Another study on 
Grape leaves by Tanwar & Lamba (2023) was able to 
demonstrate 99% accuracy while identifying and 
classifying diseases in Grape plant. While using 
Xception model such complex image classification 
tasks, one should be mindful of its high 
computational cost and, that its performance is 
sensitive to choice of hyperparameters, and how they 
are tunned and optimized (Chollet, 2017).  
While previous studies have successfully applied 
different CNN models for plant disease detection, 
there remains a need for comparative research that 
evaluates these different models under certain 
conditions. To tackle this gap, the following 
methodology outlines a comparative analysis of 



 
  Volume 1, Issue 1, 2024 
 

https://airaij.com/                                        | Samin, 2024 | Page 54 

pretrained CNN models along with a custom CNN 
model to determine their effectiveness in detecting 
diseases in potato, tomato, and pepper plants. 
 
A condensed analysis of pertinent reviewed literature for this paper is provided below:  

Author(s) Model / Approach 
Dataset / 
Source 

Target 
Crop(s) 

Accuracy / 
Result 

Remarks Model Limitation 

Bj et al. 
(2024) 

VGG19 
Grape leaf 
images 

Grape 98% 

Used pre 
trained VGG19 
for leaf 
classification 

Dataset used was 
small and limited to 
one crop; lacks 
generalisability 

Kumar et al. 
(2024) 

VGG19 
Apple leaf 
dataset 

Apple 98.71% 

Demonstrated 
high accuracy 
using transfer 
learning 

Limited to single-
crop classification; 
no fine tuning 
performed 

Bharti et al. 
(2024) 

ResNet50 
Potato 
leaf 
dataset 

Potato 98.36% 

Outperformed 
other models in 
potato disease 
detection 

Not tested on multi 
crop or real time 
applications 

Upadhyay 
and Saxena 
(2024) 

ResNet50 
Tomato 
leaves 

Tomato >95% 

Applied 
ResNet50 on 
tomato leaf 
disease 
classification 

Did not explore 
regularisation 
techniques or 
overfitting 
prevention 

Hindarto 
(2024) 

ResNet50 
Mango 
leaf 
dataset 

Mango 99.16% 

Achieved 
highest accuracy 
among models 
for mango 
classification 

Model complexity 
and size may not be 
suitable for edge 
deployment 

Wulandari et 
al. (2024) 

Xception 
Chili leaf 
dataset 

Chili 91% 

Utilised depth 
wise separable 
convolutions 
for lightweight 
modelling 

Lower accuracy 
compared to other 
models; sensitive to 
dataset variations 

Sunyoto et al. 
(2023) 

Xception + 
ReduceLROnPlateau 

Potato 
dataset 
with 
callbacks 

Potato 97.1% 

Learning rate 
scheduler 
improved 
model 
convergence 

Callback techniques 
improved training, 
but model still 
underperformed vs 
ResNet50 

Tanwar and 
Lamba (2023) 

Xception 
Grape leaf 
dataset 

Grape 99% 

High 
performance 
reported with 
Xception model 

Model performance 
not validated across 
multiple crops or real 
world field data 
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Methodology  
This study involves the comparative evaluation of multiple CNN models for the classification of diseases in three 
crops: Potato, Tomato, and Pepper. Four models were selected for this task. Three of these models are pretrained 
CNN models and the last one is our custom CNN model.  The model looks at the pictures of the leaves of these 
crops and determines if they are healthy or have some kind of disease. The dataset used in this paper is taken from 
‘Plant Village’ 1database on Kaggle, uploaded in 2018, and it consists of labeled images of diseased and healthy leaves 
for the selected crops. In the table below is the complete description of the dataset. It contains the classes and the 
total data for each class for training. 
 
Class Images 
Tomato_healthy 1591 
Tomato__Tomato_mosaic_virus 373 
Tomato__Tomato_YellowLeaf__Curl_Virus 3209 
Tomato__Target_Spot 1404 
Tomato_Spider_mites_Two_spotted_spider_mite 1676 
Tomato_Septoria_leaf_spot 1771 
Tomato_Leaf_Mold 952 
Tomato_Late_blight 1909 
Tomato_Early_blight 1000 
Tomato_Bacterial_spot 2127 
Potato___healthy 152 
Potato___Late_blight 1000 
Potato___Early_blight 1000 
Pepper__bell___healthy 1478 
Pepper__bell___Bacterial_spot 997 
Total 20,638 

 

The dataset was preprocessed before training to 
ensure consistency. The images were first resized to a 
uniform size, then the pixel values were normalized 
between 0 and 1. After that we applied augmentation 
techniques on the dataset by rotating, flipping, and 
zooming to artificially expand the dataset and help 
prevent overfitting. 
To understand the performance of each CNN based 
approach, it is essential to briefly describe the design 
and configuration of each model used in the study. 
Four models were evaluated: one custom-designed 
CNN built from scratch and three pre-trained transfer 
learning models (VGG19, ResNet50, and Xception) 
adapted using the ImageNet weights. All models were 

 
1 Emmanuel T.O. (2018). Plant Village Dataset. Kaggle. Available at: 
https://www.kaggle.com/datasets/emmarex/plantdisease   

compiled using the Adam optimizer with a learning 
rate of 0.001 (default setting), sparse categorical cross 
entropy as the loss function, and accuracy as the 
evaluation metric. Training was conducted for 20 
epochs with a batch size of 32. The dataset was split 
into 80-10-10 split with 80% training data, 10% 
validation and testing data. 
 
1. Custom CNN 
The custom CNN model was constructed using four 
convolutional layers with filter sizes of 32, 32, 64, and 
64 respectively, each followed by max pooling layers 
for dimensionality reduction. The convolutional 
layers used a kernel size of 3x3 and ReLU activation. 

https://www.kaggle.com/datasets/emmarex/plantdisease
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After flattening, a fully connected dense layer with 64 
neurons (ReLU activation) and an output softmax 
layer with 15 neurons (for 15 classes) was added. In 
total, the model had approximately 869,423 trainable 
parameters.  
 
2. VGG19 
For the VGG19 model, the convolutional base was 
imported from Keras applications with ImageNet pre 
trained weights, excluding the top classification layer. 
The base was frozen to preserve learned features, and 
a new classification head was added comprising a 
global average pooling layer, a 128 neuron dense layer 
with ReLU activation, a dropout layer with 0.5 rate to 
prevent overfitting, and a final dense layer with 15 
neurons using softmax activation. 
 
3. ResNet50 
ResNet50 was also applied using transfer learning 
with its convolutional base frozen. Its architecture, 
based on residual learning with 50 layers, included 
skip connections that mitigated the vanishing 
gradient problem during training. Similar to VGG19, 
a new top classifier was appended with a global 
average pooling layer, followed by a dense layer with 
128 units, a dropout layer (rate 0.5), and a 15 unit 
output layer.  
 
4. Xception 
The Xception model, built with depth wise separable 
convolutions, was also adapted using pre-trained 
ImageNet weights and a custom top classifier. The 
classifier followed the same architecture as other 
transfer models: a global average pooling layer, 128 
unit dense layer (ReLU), dropout layer (0.5), and a 15 
class output layer.  
We evaluated the models by comparing the accuracy, 
time taken, and F1 score. Accuracy measured the 
overall correctness of the model predictions whereas 
the F1 score provided us with a balanced measure of 
precision and recall, especially useful for our dataset 
as it had an imbalance of classes. Training time was 
also recorded for each model to assess the 
computational efficiency of the models. After training 
these metrics were compared to determine the best 
model for plant disease detection in the selected 
crops. 

Results and Comparative Analysis 
As discussed in the methodology, we have deployed 
four convolutional neural network (CNN) models for 
this research to perform multi-class classification on 
vegetable disease images: a custom-designed CNN, 
VGG19, ResNet50, and Xception. The dataset 
utilised for this task comprised 20,638 images 
spanning 15 distinct classes, covering a variety of 
vegetable diseases as well as healthy plant conditions. 
The dataset was split into training, validation, and 
testing sets in the ratio of 80:10:10, and models were 
evaluated based on accuracy, precision, recall, and F1 
score. The results of our study are discussed below in 
detail.  
The custom CNN architecture, built from scratch, 
consisted of multiple convolutional layers 
interspersed with max-pooling layers, followed by 
dense layers culminating in a softmax output layer. 
After 20 epochs, the model achieved a test accuracy of 
87.50%, with a precision of 0.8400, recall of 0.8503, 
and an F1 score of 0.8339. The learning curves 
indicate that the model progressively improved over 
epochs, reducing both training and validation loss 
substantially, although minor fluctuations in 
validation loss were observed in the mid-epochs. 
These could be attributed to the model overfitting 
slightly on certain classes or inherent class imbalance 
in the dataset. The strong performance of the custom 
model validates the design choices, particularly the 
balance between depth and complexity which allowed 
it to generalise effectively without pre-trained weights. 
The VGG19 model, adapted via transfer learning, 
demonstrated a test accuracy of 89.52%, precision of 
0.8956, recall of 0.8691, and F1 score of 0.8759. 
These results surpass those of the custom CNN, 
highlighting the advantage of leveraging pre-trained 
weights on large-scale datasets like ImageNet. The 
validation accuracy of the VGG19 model consistently 
improved with each epoch, and the gap between 
training and validation loss remained minimal, 
suggesting good generalisation capability. The model’s 
superior precision indicates it was better at avoiding 
false positives compared to the custom model, which 
is particularly useful in agricultural applications where 
misclassifying a healthy plant as diseased (or vice versa) 
could have significant implications for farm 
management. 
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Among all tested architectures, the ResNet50 model 
emerged as the best performer, achieving 94.86% test 
accuracy, precision of 0.9453, recall of 0.9443, and an 
F1 score of 0.9438. The model’s depth and use of 
residual connections appear to have played a crucial 
role in effectively learning complex feature hierarchies 
without falling prey to vanishing gradient issues. The 
training and validation loss curves for ResNet50 
displayed stable convergence with minimal 
overfitting. The high and balanced precision and 
recall underscore its robustness across all disease 
categories, including those with subtle visual 
differences. Notably, the ResNet50 model 
consistently outperformed the others from the early 
epochs, reflecting the strength of its architecture in 
transfer learning scenarios for fine-grained image 
classification. 
In contrast, the Xception model lagged behind, 
registering a test accuracy of 45.96%, precision of 
0.3805, recall of 0.3545, and an F1 score of 0.3322. 
This underperformance may stem from a 
combination of factors: first, the model’s reliance on 
depth wise separable convolutions might have limited 

its capacity to effectively capture the nuanced features 
of the plant disease dataset, particularly in the absence 
of fine-tuning. Additionally, the training logs revealed 
slower convergence and higher variance between 
training and validation metrics, indicative of poor 
generalisation. The Xception model’s lower recall 
suggests it failed to detect many positive instances of 
diseases, which is concerning in a real-world 
deployment context where missing a diseased plant 
could allow the spread of infection. 
A comparative overview of the models shows that 
transfer learning significantly enhances classification 
performance for this task. Both VGG19 and 
ResNet50 outperformed the custom CNN in all 
metrics, with ResNet50 demonstrating a clear edge. 
This aligns with expectations, as deeper models with 
residual connections can better exploit feature 
representations learned on diverse datasets. 
Interestingly, while VGG19 achieved competitive 
precision, its recall was slightly lower than ResNet50, 
suggesting that it might be more conservative in 
classifying positive cases. 

 
Table 1: Comparative Performance of CNN Models on Test Data 

Model Test Accuracy Precision Recall F1 Score Time 

Custom CNN 0.8750 0.8400 0.8503 0.8339 34 min 

VGG19 0.8952 0.8956 0.8691 0.8759 51 min 

ResNet50 0.9486 0.9453 0.9443 0.9438 36 min 

Xception 0.4596 0.3805 0.3545 0.3322 41 min 

(Source: Model evaluation results) 
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(Source: Model evaluation results) 

 
The custom CNN, despite not being pre-trained, 
proved to be a strong baseline model, reinforcing the 
idea that domain-specific architectures tailored to the 
task can be highly effective. Its performance was close 
to VGG19, which is noteworthy given the resource 
efficiency of training a lighter, custom-designed model 
versus a heavyweight pre-trained one. 

On the other hand, Xception’s unexpectedly poor 
results underscore the importance of model selection 
and hyperparameter tuning in transfer learning 
applications. The architecture, while theoretically 
powerful, appears to have been ill-suited to this 
specific classification task without additional tuning 
or possibly unfreezing some layers for fine-tuning. 
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Practical Implications and Conclusion 
From a practical standpoint, the results indicate that 
ResNet50 would be the most appropriate model for 
deployment in an agricultural decision support system 
for early plant disease detection. Its high accuracy, 
coupled with balanced precision and recall, would 
help minimise both false positives and false negatives, 
supporting timely and accurate interventions. 
However, it is important to consider the 
computational requirements associated with such 
models, particularly in low-resource settings where 
edge devices might be used for inference. In these 
cases, the custom CNN could offer a trade-off between 
accuracy and computational efficiency, especially 
given its relatively strong performance. 
Furthermore, the variability in model performance 
points to the potential benefits of exploring ensemble 
methods or hybrid approaches, combining the 
strengths of multiple architectures to further enhance 
robustness. Future work could also focus on class-
specific analysis to identify which diseases were most 
prone to misclassification and why, as well as 
investigate the impact of augmenting the dataset with 
more diverse samples to address potential class 
imbalance issues. 
In summary, the comparative evaluation clearly shows 
that transfer learning with ResNet50 provides 
superior performance for vegetable disease 
classification, with VGG19 also delivering strong 
results. The custom CNN offers a viable lightweight 
alternative, while Xception, in its current 
configuration, did not meet the requirements for 
accurate classification. These insights provide a solid 
foundation for further refinement and deployment of 
automated plant disease detection systems in 
precision agriculture.  
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