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 Abstract 

Effective and seamless vertical handover (VHO) is essential for sustained 
connectivity and high QoS in 5G heterogeneous networks. However, varying 
network behaviors and protocols complicate VHO decisions, leading to latency and 
service disruptions. This paper proposes a data mining-based VHO decision 
framework that leverages historical handover data using multivariate regression and 
ANOVA to identify key parameters such as signal strength, bandwidth, jitter, 
latency, packet loss, and coverage. Simulations in NetNeuman demonstrate 
improved network performance, reduced latency, and higher handover success rates 
compared to baseline methods. Real-time decisions based on historical trends 
enhance user experience and network reliability. Future integration with advanced 
machine learning could enable adaptive and predictive handovers for 6G networks, 
supporting ultra-reliable, low-latency communication. 
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     INTRODUCTION 

The advent of fifth-generation (5G) wireless 
systems is expected to support ultra-reliable low-
latency communication (URLLC), enhance 
mobile broadband (eMBB), and enable massive 
machine-type communication (mMTC) for use in 
self-driving cars, virtual reality applications, and 
smart cities [1], [2]. To maintain uninterrupted 
access in such heterogeneous network scenarios, 
vertical handover (VHO) algorithms need to be 
robust and automated [3]. VHO is defined as the 
seamless transition of the connection of a mobile 
device from one network technology to another, 

e.g., shifting from Wi-Fi to 5G LTE while keeping 
services active [4], as illustrated in the Figure. 1. 
Unlike horizontal handovers, which are confined 
to one network technology, VHOs are 
multisourced with diverse access technologies with 
varying levels of complexity in the decision-making 
process [5]. Received signal strength (RSS), 
bandwidth, jitter, latency, packet loss, network 
coverage, user mobility, among others, must be 
managed at the same time for optimal handover 
decision to be achieved [6]. 
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Figure. 1. Vertical Handover 
 

Conventional handover decision algorithms like 
RSS-based or cost-function-based procedures are 
not able to handle the complexity of 
heterogeneous networks and lead to sub-optimal 
decision-making, higher latency, or loss of services 
[7]. Machine learning-based techniques for 
improving handover performance using machine 
learning from network data have been explored in 
recent times [8]. However, the application of data 
mining techniques, particularly sequence-based 
analysis of historical handover data, remains 
underexplored for VHO decision-making in 5G 
networks. 
As the 5G networks evolve, intelligent and 
adaptive VHO protocols are an absolute necessity 
to deal with network heterogeneity and mobility. 
Real-time optimization in such a scenario cannot 
be addressed by manual or uninformed decision-
making processes [9]. Where current research lacks 
is the availability of a data-driven VHO system that 
can draw insightful patterns from mobility 
handover data to make optimal target network 
selections. 
This paper introduces a data mining sequence-
based VHO decision model for 5G networks. 
Contributions are: 
• Formulation of a new data mining-based 
VHO model with the use of multivariate 
regression analysis and ANOVA to determine 
major network parameters having an impact on 
handover decisions. 

• Extraction of past handover tendencies to 
predict the most suitable target network for best 
VHO, based on RSS, bandwidth, jitter, latency, 
packet loss, and coverage. 
• Large-scale testing with realistic 
simulation data in the NetNeuman environment 
to demonstrate gains in handover success rate, 
latency, and network performance compared to 
baseline techniques. 

 
1. Related Work 
2.1 Vertical Handover in HetNets 
Vertical handover (VHO) guarantees seamless 
mobility between heterogeneous wireless networks 
by supporting user equipment (UE) to keep 
ongoing sessions uninterrupted in the process of 
handovers among various technologies like Wi-Fi, 
LTE, and 5G NR [10]. Nevertheless, these 
mechanisms tend to yield sub-optimal decisions, 
such as ping-pong and excessive handovers under 
varying channel conditions, compromising 
Quality of Service (QoS) [11]. To counter these 
limitations, cost-function-based methods have 
been introduced with various parameters like 
bandwidth, latency, jitter, energy consumption, 
and cost [12]. These solutions rank candidate 
networks through weighted sums of normalized 
parameters. Optimal weight assignments are 
nevertheless still subjective and difficult to 
determine, constraining adaptability under 
dynamic network environments [13]. 
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2.2 Multi-Attribute Decision Making (MADM) 
Techniques 
MADM techniques, including the Analytic 
Hierarchy Process (AHP) [14], the Technique for 
Order of Preference by Similarity to Ideal Solution 
(TOPSIS)) [15], and Grey Relational Analysis 
(GRA) [16], have been extensively applied in VHO 
decision-making, to handle various parameters at 
the same time. While AHP computes the relative 
weights on the basis of pairwise comparisons, 
TOPSIS ranks the alternatives based on their 
distance from the ideal solution, and GRA 
evaluates the relational closeness to that ideal 
performance. Their structured methodologies 
outperform those based on the simple cost 
function.  However, MADMs are subject to 
scalability issues as the number of parameters and 
alternatives increase [17]. Additionally, the 
dependence on the expert-defined weights of the 
technique, autonomy is constrained. Moreover, 
they also do not provide forecasts to predict future 
conditions of the network for proactive handover 
decision-making. 
2.3 Machine Learning-Based VHO Decision 
Approaches 
Some of the recent studies focus on adaptive and 
predictive VHO decisions using machine learning 
(ML)-based approaches [18]. For instance, SVM, 
Random Forests, and ANN can classify optimal 
target networks depending on network 
parameters. Reinforcement Learning (RL) has also 
developed in VHO [19], through which an 
optimal policy of handover is learned by 
environmental interaction [20]. RL-based 
techniques dynamically adapt to several network 
conditions and are thus aligned with the self-
optimizing characteristics envisioned for 5G and 
further [21]. However, supervised learning models 
require large amounts of labeled data, which is 
often not feasible, while RL incurs costs for 
exploration and delays for convergence. 
2.4 Data Mining Applications in Mobility 
Management 
Data mining has been extensively applied in 
wireless networks for the detection of anomalies, 
prediction of traffic, and optimization of resource 

allocation. With frequent pattern mining, 
mechanisms have been developed to derive user 
behavior and mobility patterns that are beneficial 
for resource management before the event takes 
place [22]. In the application of data mining under 
VHO, clustered network parameter data using 
data mining for handover decisions showing 
increased decision accuracy. However, the 
application of multivariate regression-based data 
mining to extract historical parameter impact 
patterns for informed real-time VHO decision-
making in heterogeneous 5G networks remains 
underexplored. 
 
2.5 Research Gaps 
Thus far, works have made meaningful 
advancements in VHO decision making drawing 
from MADM and ML approaches. However, a 
couple of notable gaps still exist:  
• There is a lack of interpretable data-driven 
models quantifying the impacts of parameters on 
handover success, which should be a basis for 
autonomous network management and 
optimization.  
• Regression data mining frameworks have 
yet to find serious application for extracting 
historical decision patterns to aid real-time VHO 
in heterogeneous and ultra dense 5G 
environments. 
This research fills these gaps by putting forward 
data mining-based VHO decision-making, based 
on multivariate regression analysis and ANOVA, 
to extract important network parameters, 
determine predictive decision rules, and improve 
handover performance in 5G networks. 
 
2. Proposed Data Mining Based VHO 

Framework 
This section presents the proposed data mining-
based VHO decision-making framework for 5G 
networks that utilizes multivariate regression 
analysis to find key parameters in handover 
decisions and develop an optimal decision model, 
block diagram shown in Figure 2.  
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Figure 2. Data Mining based VHO Mechanism 

 
3.1 Data Collection 
Data collection has been done in both simulated 
and actual heterogeneous network scenarios, 
measuring parameters such as Received Signal 
Strength (RSS), bandwidth, jitter, latency, packet 
loss, and network coverage throughout the 
handover procedures. Measurements were 
configured to 3GPP standards through RRC 
Reconfiguration and RRC Resume signaling 
procedures. The data sets included numerous 
observations of inter-RAT handovers, i.e., between 
WiMAX and 5G NR (L3500) technologies. 
3.3 Sampling 
A straightforward random sampling with 
replacement (SRSWR) method was used to extract 
representative data subsets while maintaining 
original data characteristics. The merged data set 
was then split into Technology Mode switches 
with a Decision HO characteristic as a binary 
variable to denote VHO instances. This allowed 
easy model training process and allowed efficient 

tracing of pre- and post-handover parameter 
dynamics. 
3.4 Proposed Algorithm Workflow 
The proposed VHO decision-making algorithm 
comprises the following steps. Detailed flow chart 
is shown in the Figure 3.  
1. Data Analysis: Analyze gathered data to derive 

patterns and correlations among network 
parameters and effective handover decisions. 

2. Rule Generation: Derive decision rules in "if-
then" formats from the observed patterns to 
make future VHO decisions. 

3. Decision Making: Incorporate the rules to 
make decisions on the best handover target 
based on real-time network conditions. In 
cases where there are more than one suitable 
rules, a conflict resolution procedure selects 
the best alternative. 

4. Continuous Improvement: Dynamic revision 
of decision rules from newly acquired data to 
improve decision accuracy and promptness. 
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Figure 3. Detailed flow chart of the DM based VHO algorithm.  
 
3.5 Multivariate Regression Analysis 
Multivariate regression was employed to model the 
correlation between the success of handover 
(dependent variable, Y) and a number of 
independent network parameters (x). The general 
equation for regression is: 

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀               (1) 
Where 𝛽0 and 𝛽1 are the intercept regression 
coefficients, and 𝜀 is the error term. The Ordinary 

Least Squares (OLS) method was used to estimate 
coefficients: 

𝛽 =
𝑋′𝑌

𝑋′𝑋
                                 (2) 

where 𝑋 is the design matrix, 𝑋′ its transpose, 
and 𝑌 the dependent variable vector. 
 
Regression Analysis Steps: 
1. Data Preparation: Cleaning, missing values 

handling, and variable transformations. 
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2. Design Matrix Generation: Generation of a 
design matrix of n observations and p 
independent variables with an extra column 
of ones for the intercept. 

3. Estimation of Coefficients: Matrix algebra 
used to obtain β values. 

4. Interpretation: All the coefficients indicate 
the change in Y expected for a one-unit 
change in the corresponding X, keeping the 
others constant. 

 
3.6 Analysis of Variance (ANOVA) 
ANOVA was used to test the statistical 
significance of every parameter in reaching VHO 
decisions. It tests significant differences in the 
means between parameter groups and gives hints 
towards contributory features for building the 
model. The ANOVA F-statistic is calculated as: 

𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
                                 (3) 

where MST is the mean square treatment and 
MSE is the mean square error. A higher F-value 
indicates greater significance of the independent 
variable on the dependent outcome. 
 
3.7 Model Formulation 
The proposed framework integrates data mining, 
multivariate regression, and ANOVA analysis to 
build an interpretable and adaptive VHO 
decision-making model for heterogenous 5G 
networks to ensure better mobility management 
and network performance 
 
4. Experiments and Results 
4.1 Simulation Setup 
Simulations were conducted using the 
NetNeuman simulator to evaluate the proposed 
data mining-based VHO decision framework. The 
simulation parameters are summarized in 

Table 1. Simulation Parameters 
Parameter Value 

Number of UEs 100 

Simulation Duration 1800 seconds 

Network Technologies 5G NR (L3500), Wi-Fi 

Mobility Models Random Waypoint, Gauss-Markov 

Baseline Algorithms RSS-based, Cost-function-based, AHP-TOPSIS 

 
The evaluation considered the following key 
performance indicators: 
• Handover Success Rate (%) – Ratio of 

successful handovers to total attempted 
handovers. 

• Average Latency (ms) – Mean time taken to 
complete a handover. 

• Packet Loss (%) – Percentage of packets lost 
during handover events. 

• User Throughput (Mbps) – Average user 
data rate post-handover. 
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Figure 4. Success Rate Comparison 
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Figure 5. Packet Loss Comparison 
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Figure 6. Latency Comparison 
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Figure 7. Throughput (MbpS) Comparison 

 
4.2 Results and Discussions 
Performance comparison among the proposed model 
and baseline algorithms is shown in this section. The 
simulation results show that the new data mining-
based VHO decision model performs better than 
classic algorithms for all metrics of 
evaluation. Namely, it recorded a handover success 
rate of 96.3% as revealed in the Figure. 4, which 
is around 4.5% better than AHP-TOPSIS 
and far better than RSS based methods. 
This enhancement owes to the regression model’s 
capacity to measure the effect of various parameters, 
which makes more accurate decisions possible. 
Moreover, 
the suggested approach minimized the average 
handover latency to 37 ms, improving the quality 
of user experience, especially for delay-
sensitive services as depicted in Figure. 5. The packet 
loss during the handover was minimized to 0.8%, 
signifying improved reliability 
and uninterrupted service continuity as depicted in 
the Figure. 6. The throughput of 
the user also increased to 27.4 
Mbps, evidencing improved utilization of 
resources and network performance as depicted in 
the Figure. 7. 
5. Conclusion and Future work 
This article presented a data mining sequence-based 
vertical handover decision model for 5G 
networks, leveraging multivariate regression and 
ANOVA to derive patterns of historical handover for 

real-time decision-making. Simulation 
results show enhancements in handover success rate, 
latency, packet loss, and 
throughput over conventional methods. The future 
work will involve integrating with AI-based 
models to achieve intelligent mobility management in 
6G networks. 
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