ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

PROACTIVE FAULT DIAGNOSIS AND SELF-HEALING THROUGH AIFDRIVEN

ANOMALY DETECTION IN SOFTWARE LOGS

Rizwan Igbal

PhD Scholar, Department of Telecommunication Engineering, Dawood University of Engineering and Technology, Karachi

rizwan.igbal@duet.edu.pk

Keywords

Alpowered anomaly detection,
software logs, machine learning,
deep learning, selfhealing
systems, log analysis, LSTM,
Transformer models, contrastive
learning, proactive fault
diagnosis, reinforcement
learning, explainable Al, system
resilience, automated fault
recovery, real- time anomaly
detection

Article History

Received: 10 October 2025
Accepted: 15 December 2025
Published: 31 December 2025

Abstract

Modern software systems generate vast volumes of logs, making manual analysis
impractical for effective monitoring and fault diagnosis. This paper proposes an
architecture leveraging advanced machine learning and deep learning
techniques— such as LSTMs, Transformers, contrastive learning, and self-
supervised learning— to detect anomalous patterns in logs for proactive fault
diagnosis and selfhealing. Traditional rule-based methods fall short in handling
the complexity and scale of contemporary systems. Reinforcement learning and
rule-based automation further enable fault correction, reducing system downtime.
Evaluation across various log datasets using metrics like precision, recall, F1-
score, and AUCROC shows Transformer-based models outperform traditional
methods, albeit with higher computational demands. The proposed self-healing
systems reduce downtime by up to 68.2%, highlighting Al’s potential to enhance
system resilience. However, challenges remain in model interpretability,
computational cost, and realtime deployment. Addressing these through
lightweight models, explainable Al, and scalable deployment is key to advancing
Al-driven anomaly detection in safety- critical systems. This work also offers a
state-ofthe-art review and outlines future research dirvections to improve

practicality and scalability.

Copyright @Author
Corresponding Author: *
Rizwan Igbal

INTRODUCTION

Current software systems have become complex and
therefore need more advanced techniques in the
monitoring and diagnosing. Software logs as a type
of the source records for system activity take place
for analyzing the system, the recognition of its failed
behavior, and the diagnosis of faults. Historically,
the software log analysis could be done only with the
help of manual examination as well as rules, which
perfectly fit into simple cases, yet fail to be reviewed
complex and dynamic
surroundings [1]. These systems are becoming
increasingly more complex, and the amount of logs
produced is simply too large to be processed

as efficient in more

individually [2]. To this end, researchers have
employed Al and ML paradigms to automate
anomaly detection in software logs for early
diagnosis of faults and creation of self-healing
systems.

Software logs are important in understanding the
status of a system and the occurrence of anomalies is
common hence the need to detect them.
Conventional methods are mostly based on pre-
specified patterns or on a certain set of thresholds
that define anomalies [3]. However, these approaches
have several demerits like high false positives, lack of
flexibility in adapting into new types of anomaly and

https://airaij.com/

| Igbal, 2025 |

Page 70

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735
mailto:rizwan.iqbal@duet.edu.pk

8 Air journal of
* ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

difficulty in wusing the approach in different
environments [4]. Thus, Al techniques have become
a viable solution to learn these complex patterns
using ML models and identifying anomalies in real-
time [5]. Through using machine learning to train
and select patterns, log analysis appears to generate
more accurate, specific, and reliable results in terms
of identifying new patterns of failure and security
threats [6].

Modern developments of deep learning and NLP
technologies have only improved the efficiency of log
anomaly detection more significantly. In particular,
LSTM networks, CNNs, and transformer-based ones
are used to fit log sequences, including the approach
demonstrated much higher effectiveness compared
to traditional statistical methods [7]. These models
can express long time dependency between the logs
and context about events in the same sequence that
can lead to better Anomaly detection. Further, novel
techniques of self- supervision have been proposed
in order to enhance the results of AD in cases of lack
of labeled data [8]. Self-supervision using contrastive
learning and autoencoders is demonstrated to
capture appropriate log representations and detect
potential minor issues with the help of which rule-
based systems might miss, according to Wang and
his team of authors.

Moving to the next step after anomaly detection it is
possible to use self-healing systems that can recover
automatically when faults are detected. Self-healing
mechanisms are the self-diagnostic ability of the
system that allows for constant detection of failures
and diagnosis of the problem together with
proposing a solution towards the resolution of the
problem with minimal system downtime [9]. Such
systems also use reinforcement learning and
automated remedial steps to rectify any problem
detected without the involvement of human beings
[10]. [11] suggest that by introducing Al into the
system, they are improved system availability and
decreased maintenance expenses, particularly in the
area of anomaly detection with selfhealing
properties.

However, there are still some open issues with Al
utilization in log analysis. First of all, the major one
is that when it comes to the modeling, the
anomalous data are rare to observe in comparison to
log entries, which leads to a shift in predictions [40].
Furthermore, deep learning based anomaly detection

models are difficult to interpret though deep
learning algorithms are powerful neural networks
which make it challenging for operators to
comprehend and validate the outcomes (Lipton
2018). Another significant problem is the
computational cost, since real-time analysis involves
models that must analyze high- velocity log streams as
soon as possible. Overcoming these challenges is the
crucial step in deploying the technologies of log
analysis with the help of Al in massive encompassing
critical missions.

This paper’s objective is to discuss the cutting-edge
area of Al-based anomaly detection in software logs,
with specific focus on the applications of an
intelligent fault diagnosis and self-healing systems.
We then discuss the state-of-the-art approaches for
traditional and machine learning approaches for log
anomaly detection, advantages and disadvantages.
Anomaly detection is the next section of the paper
and we address log preprocessing and feature
extraction as well as the selection of the models. The
proposed approach is thus used on realworld log
datasets to show its ability to flag the anomalies and
to invoke selfrepair processes. In the end, we
consider the prospects of using Al in log analysis and
estimate the directions for its further enhancement
with regard to the model quality, interpretability,
and time/storage complexity.

Employing machine learning techniques in anomaly
detection shifts an organization from a repair
mentality where they only repair faulty systems to an
orderly approach of system management thereby
cutting down on the systems’ downtime and
enhancing the reliability of the overall software.
Another way that improves the system resilience is
the building of self healing qualities that provide the
means for the program to self-diagnose and recover
from existing faults. The advancements in the Al
technologies will greatly enhance the utilization of
log analysis software through increasing the levels of
intelligent control and automotive maintenance in
the future.

2. Literature Review

2.1 Traditional Approaches to Anomaly
Detection in Software Logs

Detecting an anomaly in the software logs has always
been an important step in software monitoring and
assessment of system reliability. Initial methods of

https://airaij.com/

| Igbal, 2025 | Page 71

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

8 Air journal of
* ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

anomaly detection include rule-based systems,
thresholding, and statistical analysis methods and
algorithms. The rule based system implies the
specification by the user for the rules defining
conditions that classify an incoming log entry as
either normal or anomalous. Even though such
approaches were workable in small scale and
predictable surroundings they could not adequately
address the unpredictable characteristics of today’s
Software systems due to the volume and variability of
logs, making it virtually impossible to set manual
rules for detection [39].

Statistical methods for anomaly detection appeared
to be a more adaptive approach to the problem using
probability models and distribution-based anomaly
detection (Xu et al., 2016). Statistical tools including
Principal Component Analysis(PCA), Markov
models, and Hidden Markov Models (HMM) were
used to identify the disparities in the variation
patterns [38]. However, these techniques were
designed to require prior knowledge of system
behavior and prone to fail in case of non- linear and
high dimensions of log data. Furthermore, static
methods based on statistical models also faced the
problem of employing anomaly detection in real
time as it did not change with the dynamic behavior
of the software and was not efficient with multiple
log sequences [37]Other methods including k-means
and DBSCAN were also used in the clustering of
logs with the objective of detecting anomaly classes
that do not require labeling of the logs [36].
Although they showed promising results in
discovering new anomalies, clustering-based methods
had the problem of high time complexity and
performance deterioration on large log datasets
which made them less scalable [35]. As software logs
increased in size and the variety of data sources
expanded, these basic approaches were no longer
sufficient, and researchers began applying Al-

based methods for manufacturing anomalies.

2.2 Machine
Detection in Logs
Machine learning has brought a new era on how to
handle and analyze anomalies in software logs.
Specifically a set of supervised learning algorithms
like SVM, decision trees, and ensemble models
including random forest, and gradient boost
achieved superior results in anomaly classification

Learning-Based Anomaly

compared to other methods [33]. These models work
from labeled training data, so that they are able to
distinguish between ordinary log entries and those
which are not. But the biggest problem is that
labelled log data is scarce due to the low frequency
instances of anomalies, and labelling them by hand
is tedious and prone to errors [34]

For example, unsupervised learning methods were
used in the past for their advantage in detecting
anomalies of unknown classes. Autoencoder, a type
of neural network commonly used for
dimensionality reduction and feature learning, has
been applied often in logbased anomaly detection
[33]. These models are designed to learn normal log
sequences and the irregularities from normative
trends are identified by the models. The same
applies for isolation forest, which is an ensemble
technique for isolating out-of-cluster instances based
on the partitioning of instances, has also shown
efficiency in detecting outlying instances on large-
scale log data [32]. Tor is one of the most popular
tools that help to preserve anonymity and privacy of
its users while browsing the general Internet and
using hidden services for the secure access to the
content. Anonymity is provided by volunteer-
operated virtual tunnels in a multi-hop connectivity
model that makes Tor’s hidden services to
anonymize users, content providers and servers.
However, recent research has revealed that there are
inconsistencies in the connection process of Tor HS
that can undermine the anonymity of the user and
reveal the content of the site, despite the use of
encryption, through website fingerprinting. (H Ali,
M Igbal, MA Javed, SFM Naqvi, MM Aziz, M
Ahmad, 2023) Other techniques that have also been
used in anomaly discovery of software logs include
One-Class SVMs and density-based techniques such
as GMM have also been used (Tan et al., 2022).
These methods create a hyperplane around
apparently normal data and categorize any
observation that falls outside this hyperplane as an
anomaly. However, their behavior depends on the
hyperparameters and the distribution of log features;
therefore, it is not ideal for dynamically changing
environments [30].

2.3 Deep Learning for Log Anomaly Detection
Deep learning has greatly boosted anomaly discovery
by allowing automation on feature learning for

https://airaij.com/

| Igbal, 2025 | Page 72

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

8 Air journal of
* ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

sequence data. RNNs and LSTM, GRU are widely
used to capture sequential log patterns(Fang et al.,
2021). These models can capture dependency at a
long range in log sequences and that means one can
be able to identify an anomaly spanning a number of
events. LSTM-based methods have been widely used
in learning the normal log behaviours in cloud and
distributed computing settings (Wang et al., 2021).
Recently, there have been

attempts to use
transformer-based architectures, like BERT and
GPT, for log anomaly detection by using attention
mechanisms able to capture contextual relations
within log entries (Zeng et al., 2022). These models
have provided better results in terms of analyzing
logs which are used to gain

meaningful representation in order to
identify anomalies in complex software

system However, their
computational based processing still
poses a challenge for real-time

applications as noted by [29]

Other research using CNN has also been conducted
in log anomaly detection particularly on structured
logs [28]. CNN-based approaches extract local
patterns within the log sequences as seen below,
which is an effective approach for -classifying
anomalous elements. Although CNNs provide a fast
time of inference, these networks lack the capability
of capturing long-range dependencies, which makes
them rather unsuitable for analyzing highly
sequential log data [27]

2.4 Self-Supervised and Contrastive Learning
for
Log Analysis

Due to limited availability of labeled log data, self-
supervised learning has gained much attention. Self-
supervision means that

models acquire representations
from unlabelled data through pretext tasks such as
next event prediction, masked token prediction and
contrastive learning (Guo et al., 2022). This is due to
the fact that through training through large logs,
they are able to learn more general patterns for the
different log types to be able to label new anomalies
as such without such rigid specific definitive
categorization [26] For instance, contrastive learning,
a kind of self- supervision learning that learns from

similar and different instances, has proven effective
in log anomaly detection [25]. Other methods like
SimCLR and MoCo have been extended to be used
for log-based tasks to enhance the ability of models
to learn discriminative features without necessarily
having to label them (Chen et al., 2023). Thus, the
utilization of contrastive learning has proven to
enhance detection of such anomalies in complex and
dynamic software contexts. It is very important to
control that the tasks are executed efficiently in
order to maximize the computing resources
utilization in process scheduling. Many algorithms
are available for task scheduling to achieve optimal
and efficient use of computing resources. [26]

2.5 Self-Healing Systems and Automated Fault
Recovery

Anomaly detection is one of the kinds of proactive
software maintenance; self-correction can help the
software to restore functioning on its own.
Automated selfrepair uses Al for detection of
anomalies that cause a service failure and it could
prompt service restart, resource rebalancing or
software update [25]. Reinforcement learning has
been also used in self-healing architectures where
self-interaction of an agent in overall context to learn
the best recovery plan (Kumar et al., 2023).

There are novel studies in the literature that present
reinforcement learning to optimize anomaly
detection models with self-healing mechanisms
(2018; Singh et al., 2022). These systems are capable
of categorizing the severity of the anomaly and,
therefore, control the frequency of changes in
recovery methodologies in a given system making the
system more robust. there is also an integration of
self-healing with the help of rule-based heuristics
supported with sophisticated Al that has provided a
great positive impact of enhancing the fault
tolerance levels in large-scale distributed systems [24].
Despite these developments some issues arise on the
side of interpretability as well as on the reliability
aspect of the self-healing systems. Many Al-driven
models are black-box systems, which work well but
are not easily explainable, thus, it is challenging for
system administrators to confirm the corrective
actions taken (Zhang et al., 2023). The future work
will further develop the methods of increasing the
visibility of self-healing mechanisms along with the

https://airaij.com/

| Igbal, 2025 | Page 73

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

8 Air journal of
* ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

ability to accommodate the new environments in
which the software is to be executed [23]

Recent developments in the field of anomaly
identification have escalated from basic rule-based
and statistical techniques to more sophisticated
approaches involving machine learning and deep
learning. Although the supervised and unsupervised
learning algorithms have increased the detection rate
to a great extent, the self-supervised and contrastive
learning has also simultaneously increased the
flexibility of the Al-based log analysis. Furthermore,
the work that combines anomaly detection and self
healing mechanisms for automatically fixing faults
can be regarded as the prospective trend. However,
some issues remain with the models such as
interpretability of the models, speed and the ability
of the models to adapt on the fly. Mitigating these
issues will be critical in enabling the deployment of
Al-based anomaly detection and self-healing systems
in high-impact use cases.

3. Methodology

3.1 Data Collection and Preprocessing

The first process to be followed in developing an
anomaly detection system for software logs is data
acquisition. This work focuses on the benchmark
with HDFS, BGL and log files obtained from large
scale cloud computing environment for
benchmarking. = Moreover, some real-world
production logs from cloud services, microservice,
and containerized applications were collected to
analyze the feasibility of the proposed anomaly
detection framework. This raw log data included
time stamp, logging level which could be anything
from INFO, WARN, ERROR, brief description of
the event as well as the trace of the computer
program at the time of event. Because logs are
produced as text files, such data needs to be
preprocessed to transform them into a format
suitable for analysis.

The preprocessing stage included several steps such
as Log parsing, Tokenization, and Vectorization. Log
preprocessing was carried out using Drain and
LogCluster in which rules and machine learning the
effortlessness of log files into structured
representations. First, it is tokenization which is used
to split the log messages into words, phrases or
sequences in order to extract features. Textual log
data also contained a lot of noise hence stopword

removal and stemming were also used to eliminate
the noises. To address the problem of converting
textual information to numerical features, both TF-
IDF and word embedding techniques including
Word2Vec and FastText were applied. Further, log
sequences were represented by using event templates
and positional embeddings being useful for
maintaining dependencies of the events that log
comprise of.

3.2 Feature Engineering and Representation
Learning

The process of successful anomaly detection depends
on the identification of the right features that are
able to capture the nature of logs. These included
frequency sampling of events, entropy of messages,
and log distribution by time which are normally
extracted using conventional and traditional manual
feature extraction techniques. However, tremendous
exploration in logs may ignore complex patterns and
dependencies, often requires handcrafted features
that limit the effectiveness of machine learning
models, and subsequently requires feature learning
through deep learning methodologies.

Deep learning technique was used to learn
representations that contain both semantic and
temporal properties of the logs. Specifically,
Recurrent Neural Networks, LSTM and GRU were
used to capture temporal dependencies in the log
sequences used in this problem. These models were
learned to identify normal sequences of log events
and how to identify topological changes that indicate
an anomaly. Moreover, the famous Transformer
structures like BERT and GPT were adapted by fine-
tuning on the log data sets for better contextual
analysis in order to have improved results in
anomaly detection. Self-attention in the Transformer
models enabled the appreciation of longrange
dependencies in the logs data as opposed to other

methods such as RNNs or CNNE.

3.3 Machine Learning and Deep Learning
Models for Anomaly Detection

The anomaly detection framework involved
integration of supervised, unsupervised, and self-
supervised machine learning models. In this kind of
supervised setting, actual labeled datasets were used
in developing classifiers like Random Forest,

Support Vector Machines (SVM), and Gradient

https://airaij.com/

| Igbal, 2025 | Page 74

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

8 Air journal of
* ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Boosting Decision Trees (GBDT). Such models can
be trained using logs that have been tagged in terms
of the typical and suspicious activity, so, the new
entries of the log can be automatically classified
according to the learned patterns. However, because
annotated samples of anomalies are relatively rare in
practice, traditional supervised learning methods
were not commonly used.

As a result, to overcome the problem of lack of
labeled data, unsupervised learning models were
used in the process of shooting identification.
Autoencoder, a neural network model for feature
learning, has been employed to reconstruct normal
log sequences and sort out the anomalies from the
reconstructed errors. By estimating the degree of
deviation to the learned normal pattern, two other
methods, Isolation Forests and One-Class SVMs,
were employed in recognizing outliers. Furthermore,
density-based approaches for example Gaussian
Mixture Models (GMM) were applied in modelling
the probability density functions for the log features
and identifying outlier instances from the expected
density functions.

Additional techniques of self-supervised learning
were also applied in order to improve the
performance of the anomaly detection. Transfer
from data logs, three popular contrastive learning
methods namely simclr, mocov2 and mocov3 have
been employed to extract meaningful representations
from the datasets of patient logs. Self-supervision of
training models to learn patterns of similar and
dissimilar log events enhanced the generalization of
detecting different forms of anomalies without a
need for large labeling of data. The combination of
pretraining based on self-supervision with fine-tuned
anomaly detection models enhanced robustness and
their performance.

3.4 Root Cause Analysis and Anomaly
Explanation In addition to alert generation it is
mandatory to offer alarm explanation and root cause
analysis to help the system operator to diagnose
faults. This research also aimed to apply the
techniques of explainable Al to improve the
interpretability of the results. The two methods used
for explanation of the machine learning models were
SHAP [22]agnostic Explanations) for

determining which log features were key to the
classification of an anomaly. These allowed system

administrators to identify which areas of the logs and
attributes were related to the defined anomalies in
order to fix the problem more quickly.

For the deep learning-based anomaly detection, the
heatmaps from Transformer models were used to
identify the specific log event sequences that elicited
an anomaly signal. Moreover, random clustering
methods include tSNE, and UMAP technique was
applied on log data density and normal and
anomalous clusters were distinguished. Thus,
explainability techniques in conjunction with RCA
tools provided actionable insights that contributed
to decreasing the mean time to repair (MTTR) for
the detected faults.

3.5 Implementation of
Mechanisms

Self-Healing

The last steps of the planned framework were to
incorporate automatic recovery mechanisms to
rectify the faults. To address this realtime self
healing process, the component used reinforcement
learning and rule-based remediation to correct
anomalies. These agents were trained to use Q-
learning and Deep Q-Networks (DQN) to maximize
remediation policies and adjust the recovery process
according to received feedback from the system.
Some of the learned corrective actions include
handling of possible failures such as service failure,
resource redistribution and configuration
modifications.

In addition, there were more conventional rule-
based automation scripts that were employed with
Al initiations to the remediation processes. These
scripts were run at an event of an anomaly occurring
and performed tasks also based on historical fault
solving data. The integration of reinforcement
learning and rule-based automation offered a fairly
balanced self-healing algorithm with dynamism and
stability. In this study, self-healing was assessed with
three indicators, which include the reduction in
system downtime, accuracy of fault-resolution and
the amount of time that was taken to recover from
faults.

3.6 Model Evaluation and Performance
Metrics When ranking the anomaly detection
models, multiple factors were used, such as accuracy
measures like precision, recall rates, Fl-scores, and
curve areas under the receiver operating

characteristic (AU- ROC). These indicators

https://airaij.com/

| Igbal, 2025 | Page 75

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

—e

é é "% Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

measured the efficiency of the classification of
anomalies. Precision and recall were used especially
in classifying false positives and false negatives of the
data set and also to reduce false alarms while at the
same time capturing actual outliers.

For the unsupervised models, clustering purity,
silhouette score and log reconstruction error was the
measure of evaluation. To assess the efficiency of the
self-healing mechanisms, the time of the system’s
return to its functionality before and after the
incorporation of Al automation was taken into
consideration. The effect of the proposed framework
was evaluated by comparing the overall reduction

observed in an MTTD and MTTR.

3.7 Experimental Setup and Deployment
Anomaly detection system was then proposed,
designed and deployed as a system in a live software
monitoring system. In this scenario of setting up a
real-time analysis, logs were deployed in Cloud with
Kubernetes clusters. Apache Kafka was employed for
log streaming and ingestion, which is capable of
handling huge amounts of data. The ML models
were further deployed as micro-service enabling them
to easily integrate with monitoring services such as
Prometheus, Grafana among others.

As part of the evaluation, controlled experiments
were performed in which different synthetic

Precision Recall Fl-score

anomalies were injected into the log streams. Over
and above, performance metrics including Response
time, Identification accuracy, and auto-recovery
measures were measured with high Workload. These
experiments proved how useful it is to use Al for
detecting anomalies that point to a fault, to initiate
predefined recovery measures and prevent the
breakdown of a system.

4. Results

4.1 Model Performance on Anomaly Detection
A comparison of different machine learning models
for anomaly detection in software logs shows that
there are notable differences in different evaluation
criteria concerning precision, recall, Fl-score AUC-
ROC, and time taken to train the models as well as
time taken to make predictions. In general,
Transformer-based models outperformed all other
models with the Fl-score of 0.92, while LSTM
models achieved the Fl-score of 0.90. Autoencoders
performed remarkably, with an Fl-score estimated to
be 0.86. Compared to the baselines, Random Forest
and Support Vector Machines (SVM) struggled and
displayed lower recall values, which meant that they
had higher false negative rates.

Table 1: Model Performance Metrics on Log Anomaly Detection

Inference
Time
(ms)

AUCROC

Training Time (s)

Random Forestffok:5} 0.78 0.81 0.89 12.5 1.2
0.75 0.78 0.85 10.8 1.5

0.92 0.89 0.90 0.94 35.2 2.8
0.88 0.85 0.86 091 289 2.3
0.84 0.79 0.81 0.87 15.4 1.7
0.96 423 35

0.94 091 092

https://airaij.com/

| Igbal, 2025 |

Page 76

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
* Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 1 Fl-score Comparison of Anomaly Detection Models
Fl-score Comparison of Anomaly Detection Models

In order to visualize these results, a bar chart was
developed as shown in the following Figure 1 to
compare different models of anomaly detection in
terms of Fl-score. From the figure , it is evident that
deep learning techniques, = most recent
transformative and LSTMs, are more effective than
the traditional machine learning algorithms in
detecting anomalies in log data because of its
capability to take into account sequential patterns.
Another downside of deep learning models is the
training time; for instance, training for
Transformers takes 42.3 sec while for Random
Forest, it only takes 12.5 sec. Nevertheless, the
enhanced accuracy of deep learning models gives a
rationale for their computational time in sizable
anomaly detection applications.

4.2Performance Across Different Datasets

Thus, the effectiveness of the models developed
here was evaluated on HDFS logs, BGL logs, cloud
logs, container logs, and custom logs datasets. As
also presented in table 2, the Fl-scores of the
Transformer model were consistently higher than
those of all the other algorithms varying from 0.88
to

0.92. Same for LSTM models which slightly
deteriorated and improved whenever it was needed
based on the dataset used. Isolation Forest was the
lowest-performing model, particularly with custom
generated logs: generalizing to different contexts
across the board, it achieved an overall Fl-score of

0.77.

Table 2: Performance Evaluation Across Different Datasets

Dataset LSTM Flscore Autoencoder Flscore Transformer Fl-score Isolation Forest F1-
score

HDEFS Logs 0.90 0.88 0.92 0.81

BGL Logs 0.89 0.87 091 0.80

Cloud Logs 0.87 0.85 0.89 0.78

Container 0.88 0.86 0.90 0.79

Logs

Custom Logs 0.85 0.82 0.88 0.77

https://airaij.com/

| Igbal, 2025 | Page 77

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
* ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 2 Radar Chart: Model Performance Comparison

Radar Chart: Model Performance Comparison

Recall

AUC-ROC

The Fl-score performance evaluation for datasets is
further described in the following figure 2, to show
the Fl-score of several models on several datasets.
Analyzing the presented graph, it is possible to
conclude that deep learning models, especially the
models built on Transformer, are more suitable for
changes in the log structure compared to usual
methods of anomaly detection. These findings
indicate that it is worthwhile for organizations using
Albased log monitoring tools and services to pay
more attention to Al, or deep learning techniques
when dealing with dynamic log data.

Random Forest
SVM

LST™M
Autoencoder
Isolation Forest
Transformer

ARRR

4.3Feature Extraction Effectiveness in Log Analysis
Feature extraction is among the most crucial
functions in the process of log, telemetry and other
types of anomaly detection because it provides a way
of converting text log data into machine
understandable and quantifiable formats. As shown
in Table 3, four feature extraction techniques
including TFIDF, Word2Vec, Fasttext and
Logcluster, and BERT embeddings were considered
for the evaluation of their effect on the performance
of the anomaly detection system. Thus, we are only
predominantly witnessing BERT embeddings
outcompeting conventional techniques, such as TF-

IDF with F1 score of 0.77, LogCluster of 0.80.

Table 3: Comparison of Feature Extraction Techniques

0.80
0.85
0.86
0.82
091

0.75 0.77
0.80 0.82
0.82 0.84
0.78 0.80
0.89 0.90

https://airaij.com/

| Igbal, 2025 | Page 78

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
Artificial Intelligence

T,

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 3 Feature Extraction Effectiveness in Log Analysis
Feature Extraction Effectiveness in Log Analysis

Word2Vec

FastText

LogCluster

As depicted in Figure 3 below, the percentage
contribution of each feature extraction technique
towards the improvement of the log analysis is
presented in a pie chart. This is because BERT
embeddings are more contextual with log sequences
as compared to word embeddings, therefore the
performance difference is due to the kind of
embeddings used in the model.

4.4 Effectiveness of Self-Healing Systems in
Reducing Downtime

Self-sustaining systems include automation of the
anomaly detection process with an immediate
attempt as the remedy for the problems that need to

Recovery Strategy
Rule-Based

Table 4: SelfHealing System Effectiveness in Reducing Downtime

Avg Downtime Before (mins) | Avg Downtime After (mins) |Downtime Reduction (%)

TF-IDF

BERT Embeddings

be solved to prevent a breakdown in the system.
Various strategies for recovery and its effect on
system downtimes are presented in the table below.
The results hence reveal that the hybrid Al models
were the most effective in achieving the shortest
recovery time of the system with an overall
improved downtime by 68.2%. Previous rule-based
methods of recovery were less effective with
restoring the time

lost with a mere 22.3 % as opposed to manual
intervention approach being least efficient.

Reinforcement Learning 000000000

Hybrid Al

Manual Intervention

https://airaij.com/ | Igbal, 2025 | Page 79

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
* Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 4 Effectiveness of SelfHealing Strategies in Reducing Downtime
Effectiveness of Self-Healing Strategies in Reducing Downtime

60 - Avg Downtime Before (mins)
—e— Avg Downtime After (mins)

50

40

Downtime (mins)

301

20t \

S

Rule-Based Reinforcement Learning
Recovery Strategy

Figure 4 is a line chart showing the decrease of
system downtime with reference to self-healing
strategy. The dramatic reduction in system
downtime in cases after the application of the
hybrid Al and reinforcement learning presents
viable opportunities in applying Al-lead automation
in strengthening system reliability. These results
point out the need of integrating smart self-healing
capabilities in today’s software environments to
ensure their availability and lower service expenses.

4.5 False Positive and False Negative Rates

Table 5: False Positive and False Negative Rates

Hybrid Al Manual Intervention

In evaluating anomaly detection models there is a
need to ensure that false positive values as well as
false negative values are kept to the lowest level. In
this context, the false positive rate of the
transformer- based models was the lowest, equal to
1.2 percent, and the false negative rate, equal to 1.5
percent, also could be mentioned. According to the
results, inspection had the highest false negative rate
of 6.7% which implies high probability of missing
out on important anomalies.

False Positive and False Ne;

Model False Positive Rate (%) IFalse Negative Rate (%)
Random Forest 32 4.1
SVM 5.1 6.7
LSTM 1.8 2.2
Autoencoder 2.4 3.1
Isolation Forest 43 5.0
Transformer 1.2 1.5

https://airaij.com/

| Igbal, 2025 | Page 80

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
* Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 5 False Positive Vs. False Negative Rates In Anomaly Detection Models
False Positive vs. False Negative Rates in Anomaly Detection Models

X Model
X Random Forest
X SVM
6 x LSTM

X Autoencoder
x lIsolation Forest

x 5 Transformer

[}

)

©

o

g

2 %

s 4

o

[}

=

[}

4

& 31

X
2 -
1.5 2.0 2.5 3.0 4.0 4.5 5.0

False Positive Rate (%)

Figure 5 is a type of graph called scatter plot which
shows false positives and false negatives of every
model. The above figure also manifests that the
Transformer-based model is more accurate and
reliable than the traditional machine learning
approach, like the Isolation Forest and Support
Vector Machine model in terms of precision and
recall. These are due to the proper choice of the Al
model to be used for the specific systems as well as
the fact that high FNs may lead to more undetected
system failures.

4.6 Logs Analysis Performance according to
different Techniques

Table 6: Log Parsing Performance for Different Methods

Log parsing is especially for the function of
preprocessing the log data before the occurrence of
the anomaly detection process. Table 6 depends on
the results of different log parsing techniques such
as Drain, LogCluster, and other conventional
techniques like regex parsing, ML parsing, and
BERT parsing. Yes, the mechanism checked with
the help of BERT gave the highest parsing accuracy
of 95.1% but needed more time, 5 ms per log
record. On the other hand, regex based parsing had
the lowest accuracy of 85.4% but this method was
the fastest and took 2.8 ms per log entry.

Log Parsing Method Parsing Accuracy (%) |Avg Processing Time (ms)
Drain 91.5 3.5
LogCluster 89.7 4.1
Regex-Based 85.4 2.8
ML Based 92.2 32
BERT 95.1 5.0

Figure 6 Log Parsing Accuracy Comparison

https://airaij.com/

| Igbal, 2025 |

Page 81

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
* Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Log Parsing Accuracy Comparison

94
L 92t
>
O
o
3
9
< 90 i
()]
£
9
©
a

88

86

20 xet
0‘ (/\\)6
N

%’0

= o JBS

g\\«

Log Parsing Method

Figure 6 provides a box plot showing the accuracy of
each of the methods of log parsing. It is also
observed from the outcomes that both the ML-based
and BERT-based parsers provide the most optimum
solutions in terms of accuracy and time. However,
regex based methods are always fast but they cannot
be easily modified to cater for change in log format.
For organizations desiring high accuracy in the
results, the focus should shift to the use of ML
assisted parsing as opposed to rule-based parsing
approaches.

4.7 Resource Utilization of Anomaly Detection
Models

Efficiency of resources is a significant aspect that
needs to be considered when deploying artificial
intelligence models for usage in production
processes. Table 7 shows a comparison of CPU,
memory and inference time of different models. As
seen in the Figure 6, Transformer-based models
required the highest amount of CPU usage (78.5%)
and memory usage (4.5 GB), which were both high-
level computational resources. The LSTM models
were also resource-demanding models but slightly
more efficient than the previous models.
Specifically, Random Forest and SVM had relatively
low results in the CPU and memory; however they
had high inference latency as compared to deep
learning models.

https://airaij.com/

| Igbal, 2025 |

Page 82

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
87" ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 7 Resource Utilization Comparison
Resource Utilization Comparison

Model

CPU Usage (%)
Metrics

A heatmap has been prepared in Figure 5 showing
trends in resource usage across the models. These
findings show that although models based on the
Transformer achieve higher accuracy, they are
slower in terms of their time complexity and may be
undesirable for realtime applications based on the
given research among participants. This highlights
that in order to reach an acceptable level of
accuracy, organizations depend on much more than
mere computation and as such, computational
efficiency has to be balanced according to the
capability of the organizations’ infrastructure.

Memory Usage (GB)

Inference Latency (ms)

4.8 Anomaly Detection Success Rates in Different
Scenarios

The last efficiency assessment compared the ability
of the anomaly detection models to achieve success
in different failure scenarios, such as cloud system
failures, distributed databases, containers, network
latency, and disk I/O. Table 8 highlights that
overall, all methods based on the Transformer
succeeded in detecting the anomalies with the
highest average of 88-94%. LSTM models were
ranked second with the success rate of from 85% to
92%. For the disk I/O bottleneck analysis, Isolation
Forest achieved the overall lowest success rates,
specifically, at 77%.

Table 8: Anomaly Detection Success Rates Across Different Scenarios

LSTM Success
Rate (%)

Scenario

Rate (%)

Autoencoder Success

Transformer Success Rate | Isolation Forest Success
(%) Rate (%)

Cloud 92 88
System
Failure

Distributed DB 89 87
Crash

94 81

91 80

https://airaij.com/ | Igbal, 2025 |

Page 83

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

Air journal of
* Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Figure 8 Anomaly Detection Success Rates Across Different Scenarios
Anomaly Detection Success Rates Across Different Scenarios

80

(o))
o

Y
o

Success Rate (%)

20t

Model

EEE | STM Success Rate (%)

B Autoencoder Success Rate (%)

mmm Transformer Success Rate (%)
Isolation Forest Success Rate (%)

Figure 7 shows a bar chart demonstrating success
ratios for various scenarios. Thus, the results
indicate that deep learning models are more
appropriate in explaining multiple and more
complicated failure cases in software systems.
Therefore, it is recommended that Transformer and
the LSTM techniques should be considered as a top
priority for mission-critical uses where high accuracy
for anomaly detection is needed.

These findings are a good attempt in providing an
understanding of the automated anomaly detection
and self-healing system of software logs using Al
The results also show that in comparison with usual
machine learning methods, deep learning
techniques, especially transformer and LSTM-based
approaches, achieve enhanced precision, recall, and
overall rates of anomaly detection tasks. Moreover,
the implementation of a selfviolent self- healing
system makes it possible to fix itself to troubleshoot
and minimize system failures, which add to the
reliability of the software. However, deep learning
models are heavily demanding in terms of either
CPU cycles or Cores, hence the accuracy needs to
be put in contention with the computational
capabilities of the organization. From this research,
certain recommendations can be made toward

Scenar;

3o
ot
N
io
improving the generality of Al Driven Log
Monitoring systems in contemporary software
systems.

5. Discussion

The outcomes of this study reveal that the proposed
approach of Albased anomaly detection is highly
effective compared to rule- and statisticbased
approaches for analyzing software logs. The superior
performance of deep learning models, particularly
Transformer-based architectures and LSTM
networks, highlights the growing importance of
advanced machine learning techniques in software
monitoring and fault detection. Self-healing
mechanisms are another area that proves the
effectiveness of Al in making systems less susceptible
to stoppages in the contemporary computerized
world. However, these technologies have some
limitations such as data limitations, model
limitations, computational cost and real-time issues
which must be solved to achieve the best result.

5.1 Superiority of Deep Learning for Log-Based
Anomaly Detection

The analysis of the performance of various models
in this study shows that deep learning-based models

https://airaij.com/

| Igbal, 2025 |

Page 84

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

48— Air journal of
. ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

for anomaly detection are much more accurate than
machine learning models. Transformer models had
higher precision, recall and Fl-score metrics, thus
proved to be the best option to find anomalous
patterns in log data set. These are consistent with
the current trends in conducting various analyses
that call for the use of self-attention mechanisms
and contextual embeddings to analyze log sequences
(Li et al.,2023; Zhang et al., 2023). Compared with
traditional approaches, deep learning techniques are
capable of learning features from log data in a
hierarchical manner, which greatly alleviates the
need to extract features from scratch (Cheng et al.,
2022).

Although the deep learning models are efficient in
their operation, they are fairly complex and call for
substantial train time and computational memory.
This experiment also concluded that while using
Transformer-based models, 4.5 GB memory and
78.5% CPU usage was being utilized, such values
are prohibitive for deployment in environments
with limited computing capabilities. Previous
studies have suggested several methods to solve this
problem, such as optimizing the network structures
and using quantization methods to decrease the
amount of computations needed (Kim et al., 2022;
Wang et al., 2021). Future work should be directed
towards optimizing deep learning models in relation
to establishing efficient realtime log anomaly
detection in the context of distributed and edge
computing paradigms.

5.2 Challenges of Data Imbalance and Labeled Log
Data

This would pose a huge problem when it comes to
anomaly detection because anomalies are much far
and in between compared to normal log events.
This is due to the fact that labeled anomaly data is
rare hence hindering the ability of supervised
learning models to learn adequately. This was
observed in Support Vector Machines (SVM) and
Isolation Forest algorithms where more samples
misclassified into the negative class due to strictly
defined decision boundaries. It has been found that
the use of oversampling, synthetic data, and semi-
supervised learning strategies minimizes the effect of

data imbalance (Wang et al., 2022, Sun et al., 2023,
Liu et al., 2022).

Auto learning techniques have recently been
proposed as a way to learn a model which does not
rely on labeled examples (Zhou et al., 2023). These
methods help to train anomaly detection models
from the log sequences without labels to enhance
the performance of the models in detecting new
failures that were not trained by the models. Recent
papers show promise of contrastive learning for
anomaly detection where the model is trained to
spot the difference between normal and anomalous
logs without the need for annotations (Chen et al.,
2023; Yu et al,, 2022). Consequently, this research
verified selfsupervised learning allowed for higher
success rates of anomaly detection in various and
dynamic log contexts.

5.3 The Need for Explainability and
Interpretability

The Need for Explainability and Interpretability
One limitation of deep learning for anomaly
detection is that the detection model often lacks a
notation that can be explained, which poses a major
problem since system administrators cannot trust
the model if they cannot validate its predictions.
While traditional log monitoring methods offer
direct reasons for developing rules found in the log
file, deep learning models are lack explanation,
functioning as black box analysis. As mentioned in
the prior research, this issue has been identified,
and the majority of the scholars have stressed the
importance of explainable Al (XAI) approaches in
anomaly detection [21] [20].

To increase the interpretability of deep learning

models, SHAP and LIME were emplclyallemgestuf Data Imbalar

current study. These techniques identified the most
significant log events that would significantly
contribute to the anomaly predictions and gave
chance to the administrators to validate the flagged
anomalies efficiently. However, these methods are
helpful in generating insights but they add more
computation time and real-time interpretability
becomes an issue. Further research should be aimed
at the improvement of DL-based AD interpretability
while keeping the approach light-weight.

https://airaij.com/

| Igbal, 2025 |

Page 85

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

48— Air journal of
. ¢ Artificial Intelligence

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

5.4 The Role of SelfHealing Systems in Enhancing
Software Resilience

Self-healing is yet another enhancement in proactive
fault remediation, which enables particular thrifty
monitor systems to detect and rectify problematic
situations before they turn out into recoverability
models, which are a typical characteristic of Al
driven monitoring systems. Consequently, it
established that the use of hybrid Al: reinforcement
learning and rulebased automation, minimize
system’s downtime by up to 68.2% thereby proving
the effectiveness of Al remediation. These
observations also align with the outcomes of other
scholarly works—namely, that employing
reinforcement learning-based self-healing
mechanisms enhances failure recovery effectiveness
and system availability [19]Nonetheless, self-healing
mechanisms must be constantly adjusted in
response to changes to suppress any interference
that would generate excessive cascading overhead in
the system. A weakness of reinforcement learning
based self- healing is the possibility to categorize
some anomalies, specifically the transient ones, as
serious issues, and cause unnecessary instance
restarts or resource redistribution [18]. Further
developments should be aimed at the adaptive self-
healing policies that would differentiate between
fatal and temporary failures; the self-healing
approaches should not deteriorate the observed
performance.

5.5 Scalability and Deployment Considerations for
Large-Scale Systems

In largescale cloud computing and distributed
computing, scalability is one of the major issues on
the realization of Al-based anomaly detection and
self-healing. The findings of this work thereby
pinpoint that although deep learning models offer
great accuracy, these come within the cost of high
computational demand for memory. Several recent
works have discussed the use of federated learning
in the context of anomaly detection, where models
are trained cooperatively across multiple devices,
thus minimizing the load on any single machine
(17]

One of the issues is real-time data analysis with log
data, which implies the need for stream processing

infrastructure. The specified work also utilized

Apache Kafka along with Kub&heeRoleasé®elf-Healing Sy

microservices for log ingestion and for also Anomaly
Detection & Prevention to scale the
architecture in the cloud environments. However,
the current approaches using deep learning do not
have high-throughput inference operations, making
them impractical for use in realtime operations.
Due to the features of the edge Al, it is imperative
to advance research on model optimization methods
and applied methods for realtime anomaly
detection [16].

5.6 Future Research Directions

Therefore, even though the present work
contributes important knowledge on Al for anomaly
detection, it leaves few questions unanswered.
Therefore, more research should be directed toward
improving the deep learning models, specially in
relation to knowledge distillation and model
compression to minimize computational complexity.
Moreover, the current state of explainability in Al-
based anomaly detection must be enhanced by the
production of further development of new deep
learning explaining methods.

Another interesting future research direction is the
Multi-modal log analysis, which combines log data,
system metrics, network traces, and application
performance metrics to improve the accuracy of
anomaly detection (Chen et al., 2023). Integration
of dissimilar data types will help to design and
deploy more effective and accurate anomaly

detection models that would be morScanbititg aiwd Deployment

changing conditions in software-based systems.

Conclusion

Deep learning, self-supervised learning, and self-
healing mechanisms are also identified as playing a
crucial part in the development of Al-based anomaly
detection. These technologies enhance the accuracy
of anomaly detection as well as the efficiency of
solving faults but some issues like evolving
imbalance datasets, model explain-ability, high
computational cost, and real-time computations are
issues that need to be solved to improve the
application of these technologies. Future works
should concentrate on the development of efficient,
explainable, and adaptive Al techniques for

https://airaij.com/

| Igbal, 2025 |

Page 86

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

&
¢

Y B Air journal of

é é ¢ Artificial Intelligence

o

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

continuous and real-time detection of faults and
remedial actions in today’s software ecosystems.

REFERENCES

[1] A. Agrawal, V. Laxmi, and M. S. Gaur,
“Anomaly detection in log files using
data mining techniques,” J. Comput. Sci.
Technol., vol. 30, no. 5, pp. 1063-1073,
2015, doi: 10.1007/s11390-015-1571-
7.

[2] H. Ali et al, “Poker face defense:
Countering passive circuit
fingerprinting adversaries in Tor
hidden services,” in Proc. Int. Conf. IT
Ind. Technol. (ICIT), Oct. 2023, pp. 1-
7.

[3] P. Brown et al., “Transformer-based models
for log anomaly detection,” IEEE Trans.
Artif. Intell., vol. 2, no. 1, pp. 15-29,
2021.

[4] K. Chen, J. Liu, Y. Xu, and P. Wang,
“Supervised learning for anomaly
detection in software logs: Challenges
and future directions,” IEEE Trans.
Dependable Secure Comput., vol. 18, no.
3, pp. 212-228, 2021.

[5] L. Chen et al., “Self-healing software systems:
A survey,” J. Softw. Eng., vol. 45, no. 3,
pp. 289-307, 2020.

[6] R. Chen, L. Wu, and Y. Zhang, “Multi-
modal log anomaly detection,” J. Artif.
Intell. Res., vol. 78, pp. 465-488, 2023.

(7] H. Cheng, Y. Liu, and T. Zhao,
“Hierarchical deep learning models for
anomaly detection in large-scale log
systems,” IEEE Trans. Knowl. Data Eng.,
vol. 34, no. 6, pp. 1789-1805, 2022.

[8] M. Du et al., “DeepLog: Anomaly detection
and diagnosis from system logs through
deep learning,” in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), 2017,
pp. 1285-1298.

[9] S. Ebrahimi et al., “Machine learning for self-
healing software: A survey,” ACM

Comput. Surveys, vol. 51, no. 3, Art. no.
58, 2018.

[10] W. Fang, S. Zhao, and J. He, “LSTM-based
log anomaly detection for cloud
computing environments,” J. Cloud
Comput., vol. 10, no. 1, pp. 85-102,
2021.

[11] J. Feng, X. Zhang, and W. Li, “Federated
learning for distributed log anomaly
detection,” ACM Trans. Cyber-Phys.
Syst., vol. 4, no. 2, pp. 78-98, 2022.

[12] Q. Fu et al., “Execution anomaly detection
in distributed systems through
unstructured log analysis,” in Proc.
IEEE Int. Conf. Data Mining (ICDM),
2009, pp. 149-158.

[13] X. Gao, L. Sun, and M. Huang, “Towards
explainable Al in log-based anomaly
detection,” Comput. Intell., vol. 39, no.
4, pp. 389-412, 2023.

[14] S. Ghosh et al., “Autonomous self-healing
software,” IEEE Trans. Dependable
Secure Comput., vol. 18, no. 2, pp. 303-
317, 2021.

[15] Y. Guan, T. Zhao, and Y. Chen, “Scalable
anomaly detection in software logs,”
Data Min. Knowl. Discov., vol. 33, no. 5,
pp. 1397-1420, 2019.

[16] D. Guo, S. He, Y. Zhou, and X. Xu, “Self-
supervised learning for log anomaly
detection,” IEEE Trans. Knowl. Data
Eng., vol. 34, no. 9, pp. 6789-6801,
2022.

[17] S. He et al, “Drain: A hierarchical
approach to log parsing,” IEEE Trans.
Big Data, vol. 5, no. 2, pp. 204-218,
2019.

[18] S. He et al., “An evaluation of log-based
anomaly detection using deep
learning,” IEEE Trans. Serv. Comput.,
vol. 12, no. 2, pp. 194-206, 2019.

[19] L. Huang et al, “Autoencoder-based
anomaly detection in log data,” Int. J.

https://airaij.com/

| Igbal, 2025 |

Page 87

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

&
¢

Y B Air journal of

é é ¢ Artificial Intelligence

o

ISSN: 3106-7743 |3106-7735
Volume 2, Issue 4, 2025

Big Data Intell., vol. 6, nos. 3-4, pp.
200-215, 2019.

[20] Z. Huang, Y. Wang, and L. Zhao,
“Enhancing model interpretability in
deep learning-based anomaly
detection,” Pattern Recognit. Lett., vol.
153, pp. 53-67, 2022.

[21] M. Igbal et al., “Enhancing task execution:
A duallayer scheduling approach,”
Peer] Comput. Sci., vol. 10, Art. no.
e2531, 2024.

[22] R. Jiang, L. Sun, and X. He, “Isolation
forest for unsupervised anomaly
detection in system logs,” ACM Trans.
Intell. Syst. Technol., vol. 11, no. 4, pp.
1-22, 2020.

[23] J. Kim, H. Park, and S. Lee, “Optimizing
deep learning models for real-time
anomaly detection in edge computing,”
IEEE Trans. Parallel Distrib. Syst., vol.
33, no. 7, pp. 1784-1802, 2022.

[24] Y. Kimura, H. Suzuki, and H. Tanaka,
“Rule-based log anomaly detection,” J.
Inf. Secur. Appl., vol. 31, pp. 45-57,
2016.

[25] A. Kumar, A. Bose, and G. Ramakrishna,
“Reinforcement learning-driven self-
healing software systems,” Artif. Intell.
Rew., vol. 56, no. 1, pp. 167-190, 2023.

[26] X. Li, J. Qiu, and H. Zhang, “Self-attention
in deep learningbased log anomaly
detection,” Mach. Learn., vol. 112, no.
3, pp. 587-610, 2023.

[27] Z. C. Lipton, “The mythos of model
interpretability,” arXiv preprint,
arXiv:1606.03490, 2018.

[28] R. Liu, C. Tang, and]J. Wang, “Handling
imbalanced log datasets using
adversarial augmentation,” Expert Syst.

Appl., vol. 208, Art. no. 118232, 2022.

[29] Y. Liu, C. Lin, and X. Qian, “Transformer-
based anomaly detection in logs,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 35,
no. 1, pp. 1-15, 2023.

[30] J.-G. Lou et al., “Mining invariant rules for
cloud system problem detection,” in
Proc. Int. World Wide Web Conf.
(WWW), 2010, pp. 591-600.

[31] Y. Luo et al, “Realtime log anomaly
detection at scale,” in Proc. ACM
SIGKDD, 2020, pp. 1651-1660.

[32] W. Meng et al, “Logbased anomaly
detection with deep learning: A
survey,” Comput. Intell., vol. 35, no. 1,
pp. 87-109, 2019.

[33] J. Park, S. Kim, and T. Lee,
“Reinforcement learning for self-
healing cloud applications,” ACM
Trans. Auton. Adapt. Syst., vol. 18, no. 1,
pp. 1-23, 2023.

[34] S. Park, J. Ryu, and H. Lee, “Al-driven self-
healing systems for cloud computing,”
Future Gener. Comput. Syst., vol. 116,
pp. 259-272, 2021.

[35] B. Shen, X. Zhao, and L. Yang, “One-class
SVM for software log anomaly
detection,” Expert Syst. Appl., vol. 183,
Art. no. 115459, 2021.

[36] R. Singh, P. Kaur, and S. Malhotra,
“Autonomous self-healing software,”
Eng. Appl. Artif. Intell., vol. 108, Art.
no. 104572, 2022.

[37] F. Sun, J. Wu, and H. Chen, “Addressing
data imbalance in log anomaly
detection,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 8, pp. 3402-
3418, 2023.

[38] X. Yuan, L. Wu, and X. Zhang, “Hybrid Al
approaches for self-healing software,”
IEEE Trans. Softw. Eng., vol. 49, no. 2,
pp. 350-365, 2023.

https://airaij.com/

| Igbal, 2025 |

Page 88

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

k= Air journal of ISSN: 31067743 | 31067735
* ¢ Artificial Intelligence Volume 2, Issue 4, 2025

[39] H. Zeng,]J. Zhang, and X. Luo, “BERT-
based log anomaly detection for cloud
security,” Comput. Secur., vol. 115, Art.
no. 102609, 2022.

(40] H. Zhao, Y. Song, and R. Chen, “CNN-
based log anomaly detection,” Neural
Comput. Appl., vol. 33, no. 10, pp.
4905-4921, 2021

https://airaij.com/ | Igbal, 2025 | Page 89

https://portal.issn.org/resource/ISSN/3106-7743
https://portal.issn.org/resource/ISSN/3106-7735

