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 Abstract 

Modern software systems generate vast volumes of logs, making manual analysis 
impractical for effective monitoring and fault diagnosis. This paper proposes an 
architecture leveraging advanced machine learning and deep learning 
techniques— such as LSTMs, Transformers, contrastive learning, and self-
supervised learning— to detect anomalous patterns in logs for proactive fault 
diagnosis and self-healing. Traditional rule-based methods fall short in handling 
the complexity and scale of contemporary systems. Reinforcement learning and 
rule-based automation further enable fault correction, reducing system downtime. 
Evaluation across various log datasets using metrics like precision, recall, F1-
score, and AUC-ROC shows Transformer-based models outperform traditional 
methods, albeit with higher computational demands. The proposed self-healing 
systems reduce downtime by up to 68.2%, highlighting AI’s potential to enhance 
system resilience. However, challenges remain in model interpretability, 
computational cost, and real-time deployment. Addressing these through 
lightweight models, explainable AI, and scalable deployment is key to advancing 
AI-driven anomaly detection in safety- critical systems. This work also offers a 
state-of-the-art review and outlines future research directions to improve 
practicality and scalability. 
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INTRODUCTION 
Current software systems have become complex and 
therefore need more advanced techniques in the 
monitoring and diagnosing. Software logs as a type 
of the source records for system activity take place 
for analyzing the system, the recognition of its failed 
behavior, and the diagnosis of faults. Historically, 
the software log analysis could be done only with the 
help of manual examination as well as rules, which 
perfectly fit into simple cases, yet fail to be reviewed 
as efficient in more complex and dynamic 
surroundings [1]. These systems are becoming 
increasingly more complex, and the amount of logs 
produced is simply too large to be processed 

individually [2]. To this end, researchers have 
employed AI and ML paradigms to automate 
anomaly detection in software logs for early 
diagnosis of faults and creation of self-healing 
systems. 
Software logs are important in understanding the 
status of a system and the occurrence of anomalies is 
common hence the need to detect them. 
Conventional methods are mostly based on pre- 
specified patterns or on a certain set of thresholds 
that define anomalies [3]. However, these approaches 
have several demerits like high false positives, lack of 
flexibility in adapting into new types of anomaly and 
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difficulty in using the approach in different 
environments [4]. Thus, AI techniques have become 
a viable solution to learn these complex patterns 
using ML models and identifying anomalies in real-
time [5]. Through using machine learning to train 
and select patterns, log analysis appears to generate 
more accurate, specific, and reliable results in terms 
of identifying new patterns of failure and security 
threats [6]. 
Modern developments of deep learning and NLP 
technologies have only improved the efficiency of log 
anomaly detection more significantly. In particular, 
LSTM networks, CNNs, and transformer-based ones 
are used to fit log sequences, including the approach 
demonstrated much higher effectiveness compared 
to traditional statistical methods [7]. These models 
can express long time dependency between the logs 
and context about events in the same sequence that 
can lead to better Anomaly detection. Further, novel 
techniques of self- supervision have been proposed 
in order to enhance the results of AD in cases of lack 
of labeled data [8]. Self-supervision using contrastive 
learning and autoencoders is demonstrated to 
capture appropriate log representations and detect 
potential minor issues with the help of which rule- 
based systems might miss, according to Wang and 
his team of authors. 
Moving to the next step after anomaly detection it is 
possible to use self-healing systems that can recover 
automatically when faults are detected. Self-healing 
mechanisms are the self-diagnostic ability of the 
system that allows for constant detection of failures 
and diagnosis of the problem together with 
proposing a solution towards the resolution of the 
problem with minimal system downtime [9]. Such 
systems also use reinforcement learning and 
automated remedial steps to rectify any problem 
detected without the involvement of human beings 
[10]. [11] suggest that by introducing AI into the 
system, they are improved system availability and 
decreased maintenance expenses, particularly in the 
area of anomaly detection with self-healing 
properties. 
However, there are still some open issues with AI 
utilization in log analysis. First of all, the major one 
is  that  when  it  comes  to  the  modeling,  the 
anomalous data are rare to observe in comparison to 
log entries, which leads to a shift in predictions [40]. 
Furthermore, deep learning based anomaly detection 

models are difficult to interpret though deep 
learning algorithms are powerful neural networks 
which make it challenging for operators to 
comprehend and validate the outcomes (Lipton 
2018). Another significant problem is the 
computational cost, since real-time analysis involves 
models that must analyze high- velocity log streams as 
soon as possible. Overcoming these challenges is the 
crucial step in deploying the technologies of log 
analysis with the help of AI in massive encompassing 
critical missions. 
This paper’s objective is to discuss the cutting-edge 
area of AI-based anomaly detection in software logs, 
with specific focus on the applications of an 
intelligent fault diagnosis and self-healing systems. 
We then discuss the state-of-the-art approaches for 
traditional and machine learning approaches for log 
anomaly detection, advantages and disadvantages. 
Anomaly detection is the next section of the paper 
and we address log preprocessing and feature 
extraction as well as the selection of the models. The 
proposed approach is thus used on real-world log 
datasets to show its ability to flag the anomalies and 
to invoke self-repair processes. In the end, we 
consider the prospects of using AI in log analysis and 
estimate the directions for its further enhancement 
with regard to the model quality, interpretability, 
and time/storage complexity. 
Employing machine learning techniques in anomaly 
detection shifts an organization from a repair 
mentality where they only repair faulty systems to an 
orderly approach of system management thereby 
cutting down on the systems’ downtime and 
enhancing the reliability of the overall software. 
Another way that improves the system resilience is 
the building of self healing qualities that provide the 
means for the program to self-diagnose and recover 
from existing faults. The advancements in the AI 
technologies will greatly enhance the utilization of 
log analysis software through increasing the levels of 
intelligent control and automotive maintenance in 
the future. 
  
2. Literature Review 
2.1 Traditional Approaches to Anomaly 
Detection in Software Logs 
Detecting an anomaly in the software logs has always 
been an important step in software monitoring and 
assessment of system reliability. Initial methods of 
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anomaly detection include rule-based systems, 
thresholding, and statistical analysis methods and 
algorithms. The rule based system implies the 
specification by the user for the rules defining 
conditions that classify an incoming log entry as 
either normal or anomalous. Even though such 
approaches were workable in small scale and 
predictable surroundings they could not adequately 
address the unpredictable characteristics of today’s 
Software systems due to the volume and variability of 
logs, making it virtually impossible to set manual 
rules for detection [39]. 
Statistical methods for anomaly detection appeared 
to be a more adaptive approach to the problem using 
probability models and distribution-based anomaly 
detection (Xu et al., 2016). Statistical tools including 
Principal Component Analysis (PCA), Markov 
models, and Hidden Markov Models (HMM) were 
used to identify the disparities in the variation 
patterns [38]. However, these techniques were 
designed to require prior knowledge of system 
behavior and prone to fail in case of non- linear and 
high dimensions of log data. Furthermore, static 
methods based on statistical models also faced the 
problem of employing anomaly detection in real 
time as it did not change with the dynamic behavior 
of the software and was not efficient with multiple 
log sequences [37]Other methods including k-means 
and DBSCAN were also used in the clustering of 
logs with the objective of detecting anomaly classes 
that do not require labeling of the logs [36]. 
Although they showed promising results in 
discovering new anomalies, clustering-based methods 
had the problem of high time complexity and 
performance deterioration on large log datasets 
which made them less scalable [35]. As software logs 
increased in size and the variety of data sources 
expanded, these basic approaches were no longer 
sufficient, and researchers began applying AI- 
based methods for manufacturing anomalies. 
 
2.2 Machine Learning-Based Anomaly 
Detection in Logs 
Machine learning has brought a new era on how to 
handle and analyze anomalies in software logs. 
Specifically a set of supervised learning algorithms 
like SVM, decision trees, and ensemble models 
including random forest, and gradient boost 
achieved superior results in anomaly classification 

compared to other methods [33]. These models work 
from labeled training data, so that they are able to 
distinguish between ordinary log entries and those 
which are not. But the biggest problem is that 
labelled log data is scarce due to the low frequency 
instances of anomalies, and labelling them by hand 
is tedious and prone to errors [34] 
For example, unsupervised learning methods were 
used in the past for their advantage in detecting 
anomalies of unknown classes. Autoencoder, a type 
of neural network commonly used for 
dimensionality reduction and feature learning, has 
been applied often in log-based anomaly detection 
[33]. These models are designed to learn normal log 
sequences and the irregularities from normative 
trends are identified by the models. The same 
applies for isolation forest, which is an ensemble 
technique for isolating out-of-cluster instances based 
on the partitioning of instances, has also shown 
efficiency in detecting outlying instances on large-
scale log data [32]. Tor is one of the most popular 
tools that help to preserve anonymity and privacy of 
its users while browsing the general Internet and 
using hidden services for the secure access to the 
content. Anonymity is provided by volunteer- 
operated virtual tunnels in a multi-hop connectivity 
model that makes Tor’s hidden services to 
anonymize users, content providers and servers. 
However, recent research has revealed that there are 
inconsistencies in the connection process of Tor HS 
that can undermine the anonymity of the user and 
reveal the content of the site, despite the use of 
encryption, through website fingerprinting. (H Ali, 
M Iqbal, MA Javed, SFM Naqvi, MM Aziz, M 
Ahmad, 2023) Other techniques that have also been 
used in anomaly discovery of software logs include 
One-Class SVMs and density-based techniques such 
as GMM have also been used (Tan et al., 2022). 
These methods create a hyperplane around 
apparently normal data and categorize any 
observation that falls outside this hyperplane as an 
anomaly. However, their behavior depends on the 
hyperparameters and the distribution of log features; 
therefore, it is not ideal for dynamically changing 
environments [30]. 
 
2.3 Deep Learning for Log Anomaly Detection 
Deep learning has greatly boosted anomaly discovery 
by allowing automation on feature learning for 
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sequence data. RNNs and LSTM, GRU are widely 
used to capture sequential log patterns(Fang et al., 
2021). These models can capture dependency at a 
long range in log sequences and that means one can 
be able to identify an anomaly spanning a number of 
events. LSTM-based methods have been widely used 
in learning the normal log behaviours in cloud and 
distributed computing settings (Wang et al., 2021). 
Recently, there  have been
 attempts  to  use 
transformer-based architectures, like BERT and 
GPT, for log anomaly detection by using attention 
mechanisms able to capture contextual relations 
within log entries (Zeng et al., 2022). These models 
have provided better results in terms of analyzing 
logs which are used  to  gain
 meaningful representation in order to 
identify anomalies in complex  software 
 system However,  their 
computational  based  processing still 
 poses  a challenge for real-time 
applications as noted by [29] 
Other research using CNN has also been conducted 
in log anomaly detection particularly on structured 
logs [28]. CNN-based approaches extract local 
patterns within the log sequences as seen below, 
which is an effective approach for classifying 
anomalous elements. Although CNNs provide a fast 
time of inference, these networks lack the capability 
of capturing long-range dependencies, which makes 
them rather unsuitable for analyzing highly 
sequential log data [27] 
  
2.4 Self-Supervised and Contrastive Learning 
for 
Log Analysis 
Due to limited availability of labeled log data, self- 
supervised learning has gained much attention. Self- 
supervision  means that 
 models  acquire representations 
from unlabelled data through pretext tasks such as 
next event prediction, masked token prediction and 
contrastive learning (Guo et al., 2022). This is due to 
the fact that through training through large logs, 
they are able to learn more general patterns for the 
different log types to be able to label new anomalies 
as such without such rigid specific definitive 
categorization [26] For instance, contrastive learning, 
a kind of self- supervision learning that learns from 

similar and different instances, has proven effective 
in log anomaly detection [25]. Other methods like 
SimCLR and MoCo have been extended to be used 
for log-based tasks to enhance the ability of models 
to learn discriminative features without necessarily 
having to label them (Chen et al., 2023). Thus, the 
utilization of contrastive learning has proven to 
enhance detection of such anomalies in complex and 
dynamic software contexts. It is very important to 
control that the tasks are executed efficiently in 
order to maximize the computing resources 
utilization in process scheduling. Many algorithms 
are available for task scheduling to achieve optimal 
and efficient use of computing resources. [26] 
 
2.5 Self-Healing Systems and Automated Fault 
Recovery 
Anomaly detection is one of the kinds of proactive 
software maintenance; self-correction can help the 
software to restore functioning on its own. 
Automated self-repair uses AI for detection of 
anomalies that cause a service failure and it could 
prompt service restart, resource rebalancing or 
software update [25]. Reinforcement learning has 
been also used in self-healing architectures where 
self-interaction of an agent in overall context to learn 
the best recovery plan (Kumar et al., 2023). 
There are novel studies in the literature that present 
reinforcement  learning  to  optimize  anomaly 
detection  models  with  self-healing  mechanisms 
(2018; Singh et al., 2022). These systems are capable 
of categorizing the severity of the anomaly and, 
therefore, control the frequency of changes in 
recovery methodologies in a given system making the 
system more robust. there is also an integration of 
self-healing with the help of rule-based heuristics 
supported with sophisticated AI that has provided a 
great positive impact of enhancing the fault 
tolerance levels in large-scale distributed systems [24]. 
Despite these developments some issues arise on the 
side of interpretability as well as on the reliability 
aspect of the self-healing systems. Many AI-driven 
models are black-box systems, which work well but 
are not easily explainable, thus, it is challenging for 
system administrators to confirm the corrective 
actions taken (Zhang et al., 2023). The future work 
will further develop the methods of increasing the 
visibility of self-healing mechanisms along with the 
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ability to accommodate the new environments in 
which the software is to be executed [23] 
Recent developments in the field of anomaly 
identification have escalated from basic rule-based 
and statistical techniques to more sophisticated 
approaches involving machine learning and deep 
learning. Although the supervised and unsupervised 
learning algorithms have increased the detection rate 
to a great extent, the self-supervised and contrastive 
learning has also simultaneously increased the 
flexibility of the AI-based log analysis. Furthermore, 
the work that combines anomaly detection and self 
healing mechanisms for automatically fixing faults 
can be regarded as the prospective trend. However, 
some issues remain with the models such as 
interpretability of the models, speed and the ability 
of the models to adapt on the fly. Mitigating these 
issues will be critical in enabling the deployment of 
AI-based anomaly detection and self-healing systems 
in high-impact use cases. 
 
3. Methodology 
3.1 Data Collection and Preprocessing 
The first process to be followed in developing an 
anomaly detection system for software logs is data 
acquisition. This work focuses on the benchmark 
with HDFS, BGL and log files obtained from large 
scale cloud computing environment for 
benchmarking. Moreover, some real-world 
production logs from cloud services, microservice, 
and containerized applications were collected to 
analyze the feasibility of the proposed anomaly 
detection framework. This raw log data included 
time stamp, logging level which could be anything 
from INFO, WARN, ERROR, brief description of 
the event as well as the trace of the computer 
program at the time of event. Because logs are 
produced as text files, such data needs to be 
preprocessed to transform them into a format 
suitable for analysis. 
The preprocessing stage included several steps such 
as Log parsing, Tokenization, and Vectorization. Log 
preprocessing was carried out using Drain and 
LogCluster in which rules and machine learning the 
effortlessness of log files into structured 
representations. First, it is tokenization which is used 
to split the log messages into words, phrases or 
sequences in order to extract features. Textual log 
data also contained a lot of noise hence stopword 

removal and stemming were also used to eliminate 
the noises. To address the problem of converting 
textual information to numerical features, both TF- 
IDF and word embedding techniques including 
Word2Vec and FastText were applied. Further, log 
sequences were represented by using event templates 
and positional embeddings being useful for 
maintaining dependencies of the events that log 
comprise of. 
 
3.2 Feature Engineering and Representation 
Learning 
The process of successful anomaly detection depends 
on the identification of the right features that are 
able to capture the nature of logs. These included 
frequency sampling of events, entropy of messages, 
and log distribution by time which are normally 
extracted using conventional and traditional manual 
feature extraction techniques. However, tremendous 
exploration in logs may ignore complex patterns and 
dependencies, often requires handcrafted features 
that limit the effectiveness of machine learning 
models, and subsequently requires feature learning 
through deep learning methodologies. 
Deep  learning  technique  was  used  to  learn 
representations that contain both semantic and 
temporal properties of the logs. Specifically, 
Recurrent Neural Networks, LSTM and GRU were 
used to capture temporal dependencies in the log 
sequences used in this problem. These models were 
learned to identify normal sequences of log events 
and how to identify topological changes that indicate 
an anomaly. Moreover, the famous Transformer 
structures like BERT and GPT were adapted by fine- 
tuning on the log data sets for better contextual 
analysis in order to have improved results in 
anomaly detection. Self-attention in the Transformer 
models enabled the appreciation of long-range 
dependencies in the logs data as opposed to other 
methods such as RNNs or CNNs. 
 
3.3 Machine Learning and Deep Learning 
Models for Anomaly Detection 
The anomaly detection framework involved 
integration of supervised, unsupervised, and self- 
supervised machine learning models. In this kind of 
supervised setting, actual labeled datasets were used 
in developing classifiers like Random Forest, 
Support Vector Machines (SVM), and Gradient 
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Boosting Decision Trees (GBDT). Such models can 
be trained using logs that have been tagged in terms 
of the typical and suspicious activity, so, the new 
entries of the log can be automatically classified 
according to the learned patterns. However, because 
annotated samples of anomalies are relatively rare in 
practice, traditional supervised learning methods 
were not commonly used. 
As a result, to overcome the problem of lack of 
labeled data, unsupervised learning models were 
used in the process of shooting identification. 
Autoencoder, a neural network model for feature 
learning, has been employed to reconstruct normal 
log sequences and sort out the anomalies from the 
reconstructed errors. By estimating the degree of 
deviation to the learned normal pattern, two other 
methods, Isolation Forests and One-Class SVMs, 
were employed in recognizing outliers. Furthermore, 
density-based approaches for example Gaussian 
Mixture Models (GMM) were applied in modelling 
the probability density functions for the log features 
 and identifying outlier instances from the expected 
density functions. 
Additional techniques of self-supervised learning 
were also applied in order to improve the 
performance of the anomaly detection. Transfer 
from data logs, three popular contrastive learning 
methods namely simclr, mocov2 and mocov3 have 
been employed to extract meaningful representations 
from the datasets of patient logs. Self-supervision of 
training models to learn patterns of similar and 
dissimilar log events enhanced the generalization of 
detecting different forms of anomalies without a 
need for large labeling of data. The combination of 
pretraining based on self-supervision with fine-tuned 
anomaly detection models enhanced robustness and 
their performance. 
 
3.4 Root Cause Analysis and Anomaly 
Explanation In addition to alert generation it is 
mandatory to offer alarm explanation and root cause 
analysis to help the system operator to diagnose 
faults. This research also aimed to apply the 
techniques of explainable AI to improve the 
interpretability of the results. The two methods used 
for explanation of the machine learning models were 
SHAP [22]agnostic Explanations) for 
determining which log features were key to the 
classification of an anomaly. These allowed system 

administrators to identify which areas of the logs and 
attributes were related to the defined anomalies in 
order to fix the problem more quickly. 
For the deep learning-based anomaly detection, the 
heatmaps from Transformer models were used to 
identify the specific log event sequences that elicited 
an anomaly signal. Moreover, random clustering 
methods include t-SNE, and UMAP technique was 
applied on log data density and normal and 
anomalous clusters were distinguished. Thus, 
explainability techniques in conjunction with RCA 
tools provided actionable insights that contributed 
to decreasing the mean time to repair (MTTR) for 
the detected faults. 
3.5 Implementation of Self-Healing 
Mechanisms 
 The last steps of the planned framework were to 
incorporate automatic recovery mechanisms to 
rectify the faults. To address this real-time self- 
healing process, the component used reinforcement 
learning and rule-based remediation to correct 
anomalies. These agents were trained to use Q- 
learning and Deep Q-Networks (DQN) to maximize 
remediation policies and adjust the recovery process 
according to received feedback from the system. 
Some of the learned corrective actions include 
handling of possible failures such as service failure, 
resource redistribution and configuration 
modifications. 
In addition, there were more conventional rule-
based automation scripts that were employed with 
AI initiations to the remediation processes. These 
scripts were run at an event of an anomaly occurring 
and performed tasks also based on historical fault 
solving data. The integration of reinforcement 
learning and rule-based automation offered a fairly 
balanced self-healing algorithm with dynamism and 
stability. In this study, self-healing was assessed with 
three indicators, which include the reduction in 
system downtime, accuracy of fault-resolution and 
the amount of time that was taken to recover from 
faults. 
 
3.6 Model Evaluation and Performance 
Metrics When ranking the anomaly detection 
models, multiple factors were used, such as accuracy 
measures like precision, recall rates, F1-scores, and 
curve areas under the receiver operating 
characteristic (AU- ROC). These indicators 
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measured the efficiency of the classification of 
anomalies. Precision and recall were used especially 
in classifying false positives and false negatives of the 
data set and also to reduce false alarms while at the 
same time capturing actual outliers. 
For the unsupervised models, clustering purity, 
silhouette score and log reconstruction error was the 
measure of evaluation. To assess the efficiency of the 
self-healing mechanisms, the time of the system’s 
return to its functionality before and after the 
incorporation of AI automation was taken into 
consideration. The effect of the proposed framework 
was evaluated by comparing the overall reduction 
observed in an MTTD and MTTR. 
 
3.7 Experimental Setup and Deployment 
Anomaly detection system was then proposed, 
designed and deployed as a system in a live software 
monitoring system. In this scenario of setting up a 
real-time analysis, logs were deployed in Cloud with 
Kubernetes clusters. Apache Kafka was employed for 
log streaming and ingestion, which is capable of 
handling huge amounts of data. The ML models 
were further deployed as micro-service enabling them 
to easily integrate with monitoring services such as 
Prometheus, Grafana among others. 
As part of the evaluation, controlled experiments 
were performed in which different synthetic 

anomalies were injected into the log streams. Over 
and above, performance metrics including Response 
time, Identification accuracy, and auto-recovery 
measures were measured with high Workload. These 
experiments proved how useful it is to use AI for 
detecting anomalies that point to a fault, to initiate 
predefined recovery measures and prevent the 
breakdown of a system. 
 
4. Results 
4.1 Model Performance on Anomaly Detection 
A comparison of different machine learning models 
for anomaly detection in software logs shows that 
there are notable differences in different evaluation 
criteria concerning precision, recall, F1-score AUC- 
ROC, and time taken to train the models as well as 
time taken to make predictions. In general, 
Transformer-based models outperformed all other 
models with the F1-score of 0.92, while LSTM 
models achieved the F1-score of 0.90. Autoencoders 
performed remarkably, with an F1-score estimated to 
be 0.86. Compared to the baselines, Random Forest 
and Support Vector Machines (SVM) struggled and 
displayed lower recall values, which meant that they 
had higher false negative rates. 
 

  
Table 1: Model Performance Metrics on Log Anomaly Detection 

Model Precision Recall F1-score AUC-ROC Training Time (s) Inference 
Time 
(ms) 

 Random Forest  0.85 0.78 0.81 0.89 12.5 1.2 
 SVM  0.81 0.75 0.78 0.85 10.8 1.5 
 
LSTM 0.92 0.89 0.90 0.94 35.2 2.8 
Autoencoder 0.88 0.85 0.86 0.91 28.9 2.3 
Isolation Forest 0.84 0.79 0.81 0.87 15.4 1.7 
Transformer 0.94 0.91 0.92 0.96 42.3 3.5 
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Figure 1 F1-score Comparison of Anomaly Detection Models 

 
 

In order to visualize these results, a bar chart was 
developed as shown in the following Figure 1 to 
compare different models of anomaly detection in 
terms of F1-score. From the figure , it is evident that 
deep learning techniques, most recent 
transformative and LSTMs, are more effective than 
the traditional machine learning algorithms in 
detecting anomalies in log data because of its 
capability to take into account sequential patterns. 
Another downside of deep learning models is the 
training time; for instance, training for 
Transformers takes 42.3 sec while for Random 
Forest, it only takes 12.5 sec. Nevertheless, the 
enhanced accuracy of deep learning models gives a 
rationale for their computational time in sizable 
anomaly detection applications. 
  

4.2Performance Across Different Datasets 
Thus, the effectiveness of the models developed 
here was evaluated on HDFS logs, BGL logs, cloud 
logs, container logs, and custom logs datasets. As 
also presented in table 2, the F1-scores of the 
Transformer model were consistently higher than 
those of all the other algorithms varying from 0.88 
to 
0.92. Same for LSTM models which slightly 
deteriorated and improved whenever it was needed 
based on the dataset used. Isolation Forest was the 
lowest-performing model, particularly with custom 
generated logs: generalizing to different contexts 
across the board, it achieved an overall F1-score of 
0.77. 
 

 
Table 2: Performance Evaluation Across Different Datasets 

Dataset LSTM F1-score Autoencoder F1-score Transformer F1-score Isolation Forest F1- 
score 

HDFS Logs 0.90 0.88 0.92 0.81 
BGL Logs 0.89 0.87 0.91 0.80 
Cloud Logs 0.87 0.85 0.89 0.78 
Container 
Logs 

0.88 0.86 0.90 0.79 

Custom Logs 0.85 0.82 0.88 0.77 
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Figure 2 Radar Chart: Model Performance Comparison 
 

The F1-score performance evaluation for datasets is 
further described in the following figure 2, to show 
the F1-score of several models on several datasets. 
Analyzing the presented graph, it is possible to 
conclude that deep learning models, especially the 
models built on Transformer, are more suitable for 
changes in the log structure compared to usual 
methods of anomaly detection. These findings 
indicate that it is worthwhile for organizations using 
AI-based log monitoring tools and services to pay 
more attention to AI, or deep learning techniques 
when dealing with dynamic log data. 
 
 

4.3Feature Extraction Effectiveness in Log Analysis 
Feature extraction is among the most crucial 
functions in the process of log, telemetry and other 
types of anomaly detection because it provides a way 
of converting text log data into machine 
understandable and quantifiable formats. As shown 
in Table 3, four feature extraction techniques 
including TF-IDF, Word2Vec, Fasttext and 
Logcluster, and BERT embeddings were considered 
for the evaluation of their effect on the performance 
of the anomaly detection system. Thus, we are only 
predominantly witnessing BERT embeddings 
outcompeting conventional techniques, such as TF- 
IDF with F1 score of 0.77, LogCluster of 0.80. 

Table 3: Comparison of Feature Extraction Techniques 
Feature Extraction Method Avg Precision Avg Recall Avg F1-score 
TF-IDF 0.80 0.75 0.77 
Word2Vec 0.85 0.80 0.82 
FastText 0.86 0.82 0.84 
LogCluster 0.82 0.78 0.80 
BERT Embeddings 0.91 0.89 0.90 
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Figure 3 Feature Extraction Effectiveness in Log Analysis 

 
As depicted in Figure 3 below, the percentage 
contribution of each feature extraction technique 
towards the improvement of the log analysis is 
presented in a pie chart. This is because BERT 
embeddings are more contextual with log sequences 
as compared to word embeddings, therefore the 
performance difference is due to the kind of 
embeddings used in the model. 
  
4.4 Effectiveness of Self-Healing Systems in 
Reducing Downtime 
Self-sustaining systems include automation of the 
anomaly detection process with an immediate 
attempt as the remedy for the problems that need to 

be solved to prevent a breakdown in the system. 
Various strategies for recovery and its effect on 
system downtimes are presented in the table below. 
The results hence reveal that the hybrid AI models 
were the most effective in achieving the shortest 
recovery time of the system with an overall 
improved downtime by 68.2%. Previous rule-based 
methods of recovery were less effective with 
restoring the time 
 lost with a mere 22.3 % as opposed to manual 
intervention approach being least efficient. 
 
 

 
Table 4: Self-Healing System Effectiveness in Reducing Downtime 

Recovery Strategy Avg Downtime Before (mins) Avg Downtime After (mins) Downtime Reduction (%) 
Rule-Based 45.2 35.1 22.3 
Reinforcement Learning 50.3 22.4 55.5 
Hybrid AI 48.1 15.3 68.2 
Manual Intervention 60.7 50.2 17.3 
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Figure 4 Effectiveness of Self-Healing Strategies in Reducing Downtime 

Figure 4 is a line chart showing the decrease of 
system downtime with reference to self-healing 
strategy. The dramatic reduction in system 
downtime in cases after the application of the 
hybrid AI and reinforcement learning presents 
viable opportunities in applying AI-lead automation 
in strengthening system reliability. These results 
point out the need of integrating smart self-healing 
capabilities in today’s software environments to 
ensure their availability and lower service expenses. 
  
4.5 False Positive and False Negative Rates False Positive and False Negative Rates 

In evaluating anomaly detection models there is a 
need to ensure that false positive values as well as 
false negative values are kept to the lowest level. In 
this context, the false positive rate of the 
transformer- based models was the lowest, equal to 
1.2 percent, and the false negative rate, equal to 1.5 
percent, also could be mentioned. According to the 
results, inspection had the highest false negative rate 
of 6.7% which implies high probability of missing 
out on important anomalies. 
 

 
          Table 5: False Positive and False Negative Rates 

Model False Positive Rate (%) False Negative Rate (%) 
Random Forest 3.2 4.1 
SVM 5.1 6.7 
LSTM 1.8 2.2 
Autoencoder 2.4 3.1 
Isolation Forest 4.3 5.0 
Transformer 1.2 1.5 
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Figure 5 False Positive Vs. False Negative Rates In Anomaly Detection Models 

 
Figure 5 is a type of graph called scatter plot which 
shows false positives and false negatives of every 
model. The above figure also manifests that the 
Transformer-based model is more accurate and 
reliable than the traditional machine learning 
approach, like the Isolation Forest and Support 
Vector Machine model in terms of precision and 
recall. These are due to the proper choice of the AI 
model to be used for the specific systems as well as 
the fact that high FNs may lead to more undetected 
system failures. 
  
 
4.6 Logs Analysis Performance according to 
different Techniques 

Log parsing is especially for the function of 
preprocessing the log data before the occurrence of 
the anomaly detection process. Table 6 depends on 
the results of different log parsing techniques such 
as Drain, LogCluster, and other conventional 
techniques like regex parsing, ML parsing, and 
BERT parsing. Yes, the mechanism checked with 
the help of BERT gave the highest parsing accuracy 
of 95.1% but needed more time, 5 ms per log 
record. On the other hand, regex based parsing had 
the lowest accuracy of 85.4% but this method was 
the fastest  and  took  2.8  ms  per  log  entry. 
 
 
 

            Table 6: Log Parsing Performance for Different Methods 
Log Parsing Method Parsing Accuracy (%) Avg Processing Time (ms) 
Drain 91.5 3.5 
LogCluster 89.7 4.1 
Regex-Based 85.4 2.8 
ML-Based 92.2 3.2 
BERT 95.1 5.0 

 
Figure 6 Log Parsing Accuracy Comparison 
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Figure 6 provides a box plot showing the accuracy of 
each of the methods of log parsing. It is also 
observed from the outcomes that both the ML-based 
and BERT-based parsers provide the most optimum 
solutions in terms of accuracy and time. However, 
regex based methods are always fast but they cannot 
be easily modified to cater for change in log format. 
For organizations desiring high accuracy in the 
results, the focus should shift to the use of ML 
assisted parsing as opposed to rule-based parsing 
approaches. 
 
 
 
 
 

4.7 Resource Utilization of Anomaly Detection 
Models 
Efficiency of resources is a significant aspect that 
needs to be considered when deploying artificial 
intelligence models for usage in production 
processes. Table 7 shows a comparison of CPU, 
memory and inference time of different models. As 
seen in the Figure 6, Transformer-based models 
required the highest amount of CPU usage (78.5%) 
and memory usage (4.5 GB), which were both high- 
level computational resources. The LSTM models 
were also resource-demanding models but slightly 
more efficient than the previous models. 
Specifically, Random Forest and SVM had relatively 
low results in the CPU and memory; however they 
had high inference latency as compared to deep 
learning models. 
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Figure 7 Resource Utilization Comparison 

 
 

A heatmap has been prepared in Figure 5 showing 
trends in resource usage across the models. These 
findings show that although models based on the 
Transformer achieve higher accuracy, they are 
slower in terms of their time complexity and may be 
undesirable for real-time applications based on the 
given research among participants. This highlights 
that in order to reach an acceptable level of 
accuracy, organizations depend on much more than 
mere computation and as such, computational 
efficiency has to be balanced according to the 
capability of the organizations’ infrastructure. 
  

4.8 Anomaly Detection Success Rates in Different 
Scenarios 
The last efficiency assessment compared the ability 
of the anomaly detection models to achieve success 
in different failure scenarios, such as cloud system 
failures, distributed databases, containers, network 
latency, and disk I/O. Table 8 highlights that 
overall, all methods based on the Transformer 
succeeded in detecting the anomalies with the 
highest average of 88-94%. LSTM models were 
ranked second with the success rate of from 85% to 
92%. For the disk I/O bottleneck analysis, Isolation 
Forest achieved the overall lowest success rates, 
specifically, at 77%. 

Table 8: Anomaly Detection Success Rates Across Different Scenarios 
Scenario LSTM Success 

Rate (%) 
Autoencoder Success 

Rate (%) 
Transformer Success Rate 

(%) 
Isolation Forest Success 

Rate (%) 
Cloud 

System 
Failure 

92 88 94 81 

Distributed DB 
Crash 

89 87 91 80 
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Figure 8 Anomaly Detection Success Rates Across Different Scenarios 

 
 
Figure 7 shows a bar chart demonstrating success 
ratios for various scenarios. Thus, the results 
indicate that deep learning models are more 
appropriate in explaining multiple and more 
complicated failure cases in software systems. 
Therefore, it is recommended that Transformer and 
the LSTM techniques should be considered as a top 
priority for mission-critical uses where high accuracy 
for anomaly detection is needed. 
These findings are a good attempt in providing an 
understanding of the automated anomaly detection 
and self-healing system of software logs using AI. 
The results also show that in comparison with usual 
machine learning methods, deep learning 
techniques, especially transformer and LSTM-based 
approaches, achieve enhanced precision, recall, and 
overall rates of anomaly detection tasks. Moreover, 
the implementation of a self-violent self- healing 
system makes it possible to fix itself to troubleshoot 
and minimize system failures, which add to the 
reliability of the software. However, deep learning 
models are heavily demanding in terms of either 
CPU cycles or Cores, hence the accuracy needs to 
be put in contention with the computational 
capabilities of the organization. From this research, 
certain recommendations can be made toward 

improving the generality of AI Driven Log 
Monitoring systems in contemporary software 
systems. 
 
5. Discussion  Discuss Discussion 
The outcomes of this study reveal that the proposed 
approach of AI-based anomaly detection is highly 
effective  compared  to  rule-  and  statistic-based 
approaches for analyzing software logs. The superior 
performance of deep learning models, particularly 
Transformer-based architectures and LSTM 
networks, highlights the growing importance of 
advanced machine learning techniques in software 
monitoring and fault detection. Self-healing 
mechanisms are another area that proves the 
effectiveness of AI in making systems less susceptible 
to stoppages in the contemporary computerized 
world. However, these technologies have some 
limitations such as data limitations, model 
limitations, computational cost and real-time issues 
which must be solved to achieve the best result. 
 
5.1 Superiority of Deep Learning for Log-Based 
Anomaly Detection Superiority of Deep Learning for Log-Based Anomaly Detection 
The analysis of the performance of various models 
in this study shows that deep learning-based models 
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for anomaly detection are much more accurate than 
machine learning models. Transformer models had 
higher precision, recall and F1-score metrics, thus 
proved to be the best option to find anomalous 
patterns in log data set. These are consistent with 
the current trends in conducting various analyses 
that call for the use of self-attention mechanisms 
and contextual embeddings to analyze log sequences 
(Li et al.,2023; Zhang et al., 2023). Compared with 
traditional approaches, deep learning techniques are 
capable of learning features from log data in a 
hierarchical manner, which greatly alleviates the 
need to extract features from scratch (Cheng et al., 
2022). 
Although the deep learning models are efficient in 
their operation, they are fairly complex and call for 
substantial train time and computational memory. 
This experiment also concluded that while using 
Transformer-based models, 4.5 GB memory and 
78.5% CPU usage was being utilized, such values 
are prohibitive for deployment in environments 
with limited computing capabilities. Previous 
studies have suggested several methods to solve this 
problem, such as optimizing the network structures 
and using quantization methods to decrease the 
amount of computations needed (Kim et al., 2022; 
Wang et al., 2021). Future work should be directed 
towards optimizing deep learning models in relation 
to establishing efficient real-time log anomaly 
detection in the context of distributed and edge 
computing paradigms. 
 
5.2 Challenges of Data Imbalance and Labeled Log 
Data Challenges of Data Imbalance and Labeled Log D Challenges of Data Imbalance and Labeled Log Data 
This would pose a huge problem when it comes to 
anomaly detection because anomalies are much far 
and in between compared to normal log events. 
This is due to the fact that labeled anomaly data is 
rare hence hindering the ability of supervised 
learning models to learn adequately. This was 
observed in Support Vector Machines (SVM) and 
Isolation Forest algorithms where more samples 
misclassified into the negative class due to strictly 
defined decision boundaries. It has been found that 
the use of oversampling, synthetic data, and semi-
supervised learning strategies minimizes the effect of 
data imbalance (Wang et al., 2022, Sun et al., 2023, 
Liu et al., 2022). 

Auto learning techniques have recently been 
proposed as a way to learn a model which does not 
rely on labeled examples (Zhou et al., 2023). These 
methods help to train anomaly detection models 
from the log sequences without labels to enhance 
the performance of the models in detecting new 
failures that were not trained by the models. Recent 
papers show promise of contrastive learning for 
anomaly detection where the model is trained to 
spot the difference between normal and anomalous 
logs without the need for annotations (Chen et al., 
2023; Yu et al., 2022). Consequently, this research 
verified self-supervised learning allowed for higher 
success rates of anomaly detection in various and 
dynamic log contexts. 
 
5.3 The Need for Explainability and 
Interpretability 
The Need for Explainability and Interpretability 
One limitation of deep learning for anomaly 
detection is that the detection model often lacks a 
notation that can be explained, which poses a major 
problem since system administrators cannot trust 
the model if they cannot validate its predictions. 
While traditional log monitoring methods offer 
direct reasons for developing rules found in the log 
file, deep  learning  models  are  lack  explanation, 
functioning as black box analysis. As mentioned in 
the prior research, this issue has been identified, 
and the majority of the scholars have stressed the 
importance of explainable AI (XAI) approaches in 
anomaly detection [21] [20]. 
To increase the interpretability of deep learning 
models, SHAP and LIME were employed in the 
current study. These techniques identified the most 
significant log events that would significantly 
contribute to the anomaly predictions and gave 
chance to the administrators to validate the flagged 
anomalies efficiently. However, these methods are 
helpful in generating insights but they add more 
computation time and real-time interpretability 
becomes an issue. Further research should be aimed 
at the improvement of DL-based AD interpretability 
while keeping the approach light-weight. 
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5.4 The Role of Self-Healing Systems in Enhancing 
Software Resilience The Role of Self-Healing Systems in Enhancing Software Resilience 
Self-healing is yet another enhancement in proactive 
fault remediation, which enables particular thrifty 
monitor systems to detect and rectify problematic 
situations before they turn out into recoverability 
models, which are a typical characteristic of AI-
driven monitoring systems. Consequently, it 
established that the use of hybrid AI: reinforcement 
learning and rule-based automation, minimize 
system’s downtime by up to 68.2% thereby proving 
the effectiveness of AI remediation. These 
observations also align with the outcomes of other 
scholarly works—namely, that employing 
reinforcement learning-based self-healing 
mechanisms enhances failure recovery effectiveness 
and system availability [19]Nonetheless, self-healing 
mechanisms must be constantly adjusted in 
response to changes to suppress any interference 
that would generate excessive cascading overhead in 
the system. A weakness of reinforcement learning 
based self- healing is the possibility to categorize 
some anomalies, specifically the transient ones, as 
serious issues, and cause unnecessary instance 
restarts or resource redistribution [18]. Further 
developments should be aimed at the adaptive self- 
 healing policies that would differentiate between 
fatal and temporary failures; the self-healing 
approaches should not deteriorate the observed 
performance. 
 
5.5 Scalability and Deployment Considerations for 
Large-Scale Systems Scalability and Deployment Considerations for Large-Scale Systems 

In large-scale cloud computing and distributed 
computing, scalability is one of the major issues on 
the realization of AI-based anomaly detection and 
self-healing. The findings of this work thereby 
pinpoint that although deep learning models offer 
great accuracy, these come within the cost of high 
computational demand for memory. Several recent 
works have discussed the use of federated learning 
in the context of anomaly detection, where models 
are trained cooperatively across multiple devices, 
thus minimizing the load on any single machine 
[17] 
One of the issues is real-time data analysis with log 
data, which implies the need for stream processing 

infrastructure. The specified work also utilized 
Apache Kafka along with Kubernetes-based 
microservices for log ingestion and for also Anomaly 
Detection &amp; Prevention to scale the 
architecture in the cloud environments. However, 
the current approaches using deep learning do not 
have high-throughput inference operations, making 
them impractical for use in real-time operations. 
Due to the features of the edge AI, it is imperative 
to advance research on model optimization methods 
and applied methods for real-time anomaly 
detection [16]. 
 
5.6 Future Research Directions Future Research Directions 
Therefore, even though the present work 
contributes important knowledge on AI for anomaly 
detection, it leaves few questions unanswered. 
Therefore, more research should be directed toward 
improving the deep learning models, specially in 
relation to knowledge distillation and model 
compression to minimize computational complexity. 
Moreover, the current state of explainability in AI-
based anomaly detection must be enhanced by the 
production of further development of new deep 
learning explaining methods. 
Another interesting future research direction is the 
Multi-modal log analysis, which combines log data, 
system metrics, network traces, and application 
performance metrics to improve the accuracy of 
anomaly detection (Chen et al., 2023). Integration 
of dissimilar data types will help to design and 
deploy more effective and accurate anomaly 
detection models that would be more sensitive to 
changing conditions in software-based systems. 
 
Conclusion 
Deep learning, self-supervised learning, and self- 
healing mechanisms are also identified as playing a 
crucial part in the development of AI-based anomaly 
detection. These technologies enhance the accuracy 
of anomaly detection as well as the efficiency of 
solving faults but some issues like evolving 
imbalance datasets, model explain-ability, high 
computational cost, and real-time computations are 
issues that need to be solved to improve the 
application of these technologies. Future works 
should concentrate on the development of efficient, 
explainable, and adaptive AI techniques for 
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continuous and real-time detection of faults and 
remedial actions in today’s software ecosystems. 
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