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Abstract
Vertical handover, data mining, 5G  Seamless vertical handover (VHO) is essential for ensuring continuous connectivity and
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networks,  multivariate  regression,  high Quality of Service (QoS) in 5G heterogeneous networks. However, variations in
network behaviors and protocols complicate VHO decision-making, often resulting in
higher latency and service disruptions. This paper proposes a data mining-based VHO

mobility management.
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decision framework for 5G networks that leverages historical handover data to optimize
mobility management. Using multivariate regression and Analysis of Variance
(ANOVA), the framework identifies critical parameters such as signal strength,
bandwidth, jitter, latency, packet loss, and coverage. Simulations conducted in the
NetNeuman environment demonstrate that the proposed approach outperforms baseline

Copyright @Author algorithms by reducing latency, improving handover success rates, and enhancing overall
Corresponding Author: * network performance. Realtime decision-making, supported by historical insights,
Aftab Ahmed Soomro enables the framework to better meet user demands, thereby improving both reliability

and user experience. The study also highlights the potential of integrating advanced
machine learning methods for adaptive and predictive mobility management in future
6G networks. This work contributes to the development of intelligent, data-driven
handover mechanisms vital for achieving ultra-reliable low-latency communication and
seamless mobility in next-generation wireless systems.

1. INTRODUCTION

The advent of fifth-generation (5G) wireless
systems is expected to support ultra-reliable low-
latency communication (URLLC), enhance
mobile broadband (eMBB), and enable massive
machine-type communication (mMTC) for use in
self-driving cars, virtual reality applications, and
smart cities [1], [2]. To maintain uninterrupted
access in such heterogeneous network scenarios,
vertical handover (VHO) algorithms need to be
robust and automated [3]. VHO is defined as the

seamless transition of the connection of a mobile

device from one network technology to another,
e.g., shifting from WiFi to 5G LTE while
keeping services active [4], as illustrated in the
Figure. 1. Unlike horizontal handovers, which are
confined to one network technology, VHOs are
multisourced with diverse access technologies
with varying levels of complexity in the decision-
making process [5]. Received signal strength
(RSS), bandwidth, jitter, latency, packet loss,
network coverage, user mobility, among others,
must be managed at the same time for optimal
handover decision to be achieved [6].
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Figure. 1. Vertical Handover

Conventional handover decision algorithms like
RSS-based or cost-function-based procedures are
not able to handle the complexity of
heterogeneous networks and lead to sub-optimal
decision-making, higher latency, or loss of
services [7]. Machine learning-based techniques
for improving handover performance using
machine learning from network data have been
explored in recent times [8]. However, the
application of data mining techniques,
particularly sequence-based analysis of historical
handover data, remains underexplored for VHO
decision-making in 5G networks.

As the 5G networks evolve, intelligent and
adaptive VHO protocols are an absolute necessity
to deal with network heterogeneity and mobility.
Real-time optimization in such a scenario cannot
be addressed by manual or uninformed decision-
making processes [9]. Where current research
lacks is the availability of a data-driven VHO
system that can draw insightful patterns from
mobility handover data to make optimal target
network selections.

This paper introduces a data mining sequence-
based VHO decision model for 5G networks.
Contributions are:

° Formulation of a new data mining-based
VHO model with
regression analysis and ANOVA to determine

the use of multivariate

major network parameters having an impact on
handover decisions.

o Extraction of past handover tendencies
to predict the most suitable target network for
best VHO, based on RSS, bandwidth, jitter,
latency, packet loss, and coverage.

o Large-scale  testing  with  realistic
simulation data in the NetNeuman environment
to demonstrate gains in handover success rate,
latency, and network performance compared to
baseline techniques.

2. Related Work

2.1 Vertical Handover in HetNets

Vertical handover (VHO) guarantees seamless
mobility  between  heterogeneous
networks by supporting user equipment (UE) to
keep ongoing sessions uninterrupted in the
process of handovers among various technologies
like Wi-Fi, LTE, and 5G NR [10]. Nevertheless,
these mechanisms tend to yield sub-optimal
decisions, ping-pong and excessive
handovers under varying channel conditions,
compromising Quality of Service (QoS) [11]. To
counter these limitations,
methods
parameters like bandwidth, latency, jitter, energy
consumption, and cost [12]. These solutions rank
candidate networks through weighted sums of
parameters.  Optimal  weight

wireless

such as

cost-function-based

have been introduced with wvarious

normalized
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assighments are nevertheless still subjective and
difficult to determine, constraining adaptability
under dynamic network environments [13].

2.2 Multi-Attribute Decision Making (MADM)

Techniques

MADM  techniques, including the Analytic
Hierarchy Process (AHP) [14], the Technique for
Order of Preference by Similarity to Ideal
Solution (TOPSIS)) [15], and Grey Relational
Analysis (GRA) [16], have been extensively
applied in VHO decision-making, to handle
various parameters at the same time. While AHP
computes the relative weights on the basis of
pairwise comparisons, TOPSIS ranks the
alternatives based on their distance from the ideal
solution, and GRA evaluates the relational
closeness to that ideal performance. Their
structured methodologies outperform those
based on the simple cost function. However,
MADMSs are subject to scalability issues as the
number of parameters and alternatives increase
[17]. Additionally, the dependence on the expert-
defined weights of the technique, autonomy is
constrained. Moreover, they also do not provide
forecasts to predict future conditions of the
network for proactive handover decision-making.

2.3 Machine Learning-Based VHO Decision
Approaches

Some of the recent studies focus on adaptive and
predictive  VHO  decisions using machine
learning (ML)-based approaches [18]. For
instance, SVM, Random Forests, and ANN can
classify optimal target networks depending on
network parameters. Reinforcement Learning
(RL) has also developed in VHO [19], through
which an optimal policy of handover is learned
by environmental interaction [20]. RL-based
techniques dynamically adapt to several network
conditions and are thus aligned with the self-
optimizing characteristics envisioned for 5G and
further [21]. However, supervised learning
models require large amounts of labeled data,
which is often not feasible, while RL incurs costs
for exploration and delays for convergence.

2.4 Data Mining Applications in Mobility
Management

Data mining has been extensively applied in
wireless networks for the detection of anomalies,
prediction of traffic, and optimization of resource
allocation. With frequent pattern mining,
mechanisms have been developed to derive user
behavior and mobility patterns that are beneficial
for resource management before the event takes
place [22]. In the application of data mining
under VHO, clustered network parameter data
using data mining for handover decisions
showing increased decision accuracy. However,
the application of multivariate regression-based
data mining to extract historical parameter
impact patterns for informed realtime VHO
decision-making in heterogeneous 5G networks
remains underexplored.

2.5 Research Gaps

Thus far, works have made meaningful
advancements in VHO decision making drawing
from MADM and ML approaches. However, a
couple of notable gaps still exist:

o There is a lack of interpretable data-
driven models quantifying the impacts of
parameters on handover success, which should be
a basis for autonomous network management
and optimization.

o Regression data mining frameworks have
yet to find serious application for extracting
historical decision patterns to aid real-time VHO
in  heterogeneous and ultra dense 5G
environments.

This research fills these gaps by putting forward
data mining-based VHO decision-making, based
on multivariate regression analysis and ANOVA,
to extract important network parameters,
determine predictive decision rules, and improve
handover performance in 5G networks.

3. Proposed Data Mining Based VHO
Framework

This section presents the proposed data mining-

based VHO decision-making framework for 5G

networks that utilizes multivariate regression

analysis to find key parameters in handover
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decisions and develop an optimal decision

model, block diagram shown in Figure 2.
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Packet Loss
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Figure 2. Data Mining based VHO Mechanism

3.1 Data Collection

Data collection has been done in both simulated
and actual heterogeneous network scenarios,
measuring parameters such as Received Signal
Strength (RSS), bandwidth, jitter, latency, packet
loss, and network coverage throughout the
handover  procedures. Measurements  were
configured to 3GPP standards through RRC
Reconfiguration and RRC Resume signaling
procedures. The data sets included numerous

observations of inter-RAT handovers, i.e.,
between WiMAX and 5G NR (L3500)
technologies.
3.3 Sampling
A straightforward random sampling with

replacement (SRSWR) method was used to
representative  data while
maintaining original data characteristics. The
merged data set was then split into Technology
Mode switches with a Decision HO characteristic
as a binary variable to denote VHO instances.
This allowed easy model training process and

extract subsets

allowed efficient tracing of pre- and post
handover parameter dynamics.

3.4 Proposed Algorithm Workflow

The proposed VHO decision-making algorithm

comprises the following steps. Detailed flow chart

is shown in the Figure 3.

1. Data Analysis: Analyze gathered data to
derive patterns and correlations among
network parameters and effective handover
decisions.

2. Rule Generation: Derive decision rules in "if-
then" formats from the observed patterns to
make future VHO decisions.

3. Decision Making: Incorporate the rules to
make decisions on the best handover target
based on realtime network conditions. In
cases where there are more than one suitable
rules, a conflict resolution procedure selects
the best alternative.

4. Continuous Improvement:
revision of decision rules
acquired data to improve decision accuracy
and promptness.

Dynamic
from newly
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Figure 3. Detailed flow chart of the DM based VHO algorithm.

3.5 Multivariate Regression Analysis
Multivariate regression was employed to model
the correlation between the success of handover
(dependent variable, Y) and a number of
independent network parameters (x). The general
equation for regression is:

Y=PBo+pix+e (1)
Where By and B; are the intercept regression
coefficients, and & is the error term. The
Ordinary Least Squares (OLS) method was used
to estimate coefficients:

X'Y 5
where X is the design matrix, X' its transpose,
and Y the dependent variable vector.

Regression Analysis Steps:

1. Data Preparation: Cleaning, missing values
handling, and variable transformations.

2. Design Matrix Generation: Generation of a
design matrix of n observations and p
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independent variables with an extra column
of ones for the intercept.

3. Estimation of Coefficients: Matrix algebra
used to obtain {3 values.

4. Interpretation: All the coefficients indicate
the change in Y expected for a one-unit
change in the corresponding X, keeping the
others constant.

3.6 Analysis of Variance (ANOVA)

ANOVA was used to test the statistical
significance of every parameter in reaching VHO
decisions. It tests significant differences in the
means between parameter groups and gives hints
towards contributory features for building the

model. The ANOVA F-statistic is calculated as:
MST
3)

~ MSE

Table 1. Simulation Parameters

where MST is the mean square treatment and
MSE is the mean square error. A higher F-value
indicates greater significance of the independent
variable on the dependent outcome.

3.7 Model Formulation

The proposed framework integrates data mining,
multivariate regression, and ANOVA analysis to
build an interpretable and adaptive VHO
decision-making model for heterogenous 5G
networks to ensure better mobility management
and network performance

4. Experiments and Results

4.1 Simulation Setup

Simulations were conducted using the
NetNeuman simulator to evaluate the proposed
data miningbased VHO decision framework.
The simulation parameters are summarized in

Parameter Value

Number of UEs 100

Simulation Duration 1800 seconds

Network Technologies 5G NR (L3500), Wi-Fi

Mobility Models Random Waypoint, Gauss-Markov

Baseline Algorithms RSS-based, Cost-function-based, AHP-TOPSIS

The evaluation considered the following key

performance indicators:

¢ Handover Success Rate (%) - Ratio of
successful handovers to total attempted
handovers.

e Average Latency (ms) - Mean time taken to
complete a handover.

e Packet Loss (%) - Percentage of packets lost
during handover events.

e User Throughput (Mbps) - Average user
data rate post-handover.

Success Rate (%)

88
86
84
82

RSS-based Cost-function

Proposed

AHP-TOPSIS

Figure 4. Success Rate Comparison
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Figure 5. Packet Loss Comparison

Latency (ms)
RSS-based Cost-function AHP-TOPSIS

Figure 6. Latency Comparison

Throughput (Mbps)

RSS-based Cost-function AHP-TOPSIS Proposed

Figure 7. Throughput (MbpS) Comparison
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4.2 Results and Discussions

Performance comparison among the proposed
model and baseline algorithms is shown in this
section. The simulation results show that the new
data miningbased VHO decision model
performs better than classic algorithms for all
metrics of evaluation. Namely, it recorded a
handover success rate of 96.3% as revealed in the
Figure. 4, which isaround 4.5% better than
AHP-TOPSIS and far better than RSS based
methods. This enhancement owes to the
regression model’s capacity to measure the effect
of various parameters, which makes more
accurate decisions possible. Moreover,
the suggested approach minimized the average
handover latency to 37 ms, improving the quality
of user experience, especially for delay-
sensitive services as depicted in Figure.
5. The packet loss during the handover was
minimized to 0.8%,
signifying improved reliability

and uninterrupted service continuity
as depicted in the Figure. 6. The throughput of
the user also increased to 274
Mbps, evidencing improved utilization of
resources and network performance
as depicted in the Figure. 7.

5. Conclusion and Future work

This article presented a data mining sequence-
based vertical handover decision model for 5G
networks, leveraging multivariate regression and
ANOVA to derive patterns
handover for real-time decision-making.
results show enhancements in

of historical

Simulation
handover success rate, latency, packet loss, and
throughput over conventional methods. The futu
re work will involve integrating with Al-based
models to achieve intelligent mobility
management in 6G networks.
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