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INTRODUCTION

The increase in interconnectedness of the loT
ecosystem has led to the creation of robust security
mechanisms that are required to minimize the risk
of cyber-attacks in IoT as well as in IloT ecosystems.
Machine learning (ML) based network traffic
anomaly detection, which promises to detect
malicious  activities and  protect  critical
infrastructure [1], has emerged as a powerful
approach. However, data privacy and protection
[2lcan be compromised by using normal ML
strategies that rely on regular data storage and
processing. The appealing part of Federated
Learning is that we can train a model together but
without sharing raw data (Noura S[3[4], [5]. In FL,
each device trains local models on its own data, and
then only updates the model on the central server
without revealing its sensitive information. The data
generated and processed by resource-constrained
edge devices is one of the nice things about this

decentralized approach and has a use case for loT
and IloT. We present in this paper how the
technique of federated learning can be used to solve
the detection of anomalies in network traffic and in
particular the use of Gated Recurrent Units [6], [7],
(Chen X, Zhang Z et al. 2019) a form of recurrent
neural network (RNN) designed to process time
series. One of the best abilities of GRUs is the ability
to learn and extract temporal dependencies and
patterns in sequential data and this property makes
them very suitable for the analysis of network traffic
flows and for the detection of anomalies that can be
signals of abusive

behavior. A combination of federated learning and
GRU-based models provides a strong and privacy-
protected way to improve the security of IoT and
[IoT networks.
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2. Literature Review

2.1 Anomaly Detection in IoT and IloT Networks
The rapid growth of IoT and IIoT devices has
increased dramatically the complexity and scale of
network traffic [8], [9]. Such an increase poses a big
problem for the traditional security mechanisms
which demand more sophisticated anomaly
detection mechanisms (He W, Xu W et al. 2018 )
[10]. However, traditional signature-based intrusion
detection systems (IDSs) have difficulty keeping
with the increasing appearance of novel attack
techniques [11]. Additionally, these systems rely on
predefined patterns, which are not effective against
zero-day attacks or attacks that evade signature
detection [12]. Therefore, such adaptive and
intelligent anomaly detection systems are needed
(Qiu M et al. 2020). Anomaly detection in network
traffic has been successfully realized with ML
techniques (Chen X, Zhang Z et al. 2019), [13].
Given this, ML algorithms can also learn patterns in
historical data, and identify deviations from normal
behavior, utilizing this as a way of detecting known
and unknown attacks [14]. With good performance
in anomaly detection, DL models, in particular,
have been shown to be able to learn complex
features from raw data (Qiu M, Hu X et al. 2021)
automatically, [15]. The success of Convolutional
Neural Networks (CNNs) in  imagelike
representations of network traffic, as well as the
ability of Recurrent Neural Networks (RNNs, e.g.
Long Short Term Memory (LSTM) (Chen X, Zhang
Z et al. 2019), and Gated Recurrent Units (GRUSs)
[16], (He W,Xu W et al. 2020)), to work with
sequential data, suggests that they may also be
applied to network traffic. Nevertheless, most such
methods (especially deep learning types) require
substantial amounts of labeled data for training
which can be time-consuming

and costly to collect [17]. Additionally, many of the
popular ML-based anomaly

detection systems are centralized, which are
inherently high-risk in terms of privacy, particularly
in the IoT and IloT domains where sensitive data
are often collected and processed [19].

2.2 Federated Learning for Enhanced Privacy
The rapid growth of IoT and IloT devices has
increased dramatically the complexity and scale of

network traffic (Purohit S et al. 2024 ), (Li F, Shinde

Aetal. 2019 ). Such an increase poses a big problem
for the traditional security mechanisms which
demand more sophisticated anomaly detection
mechanisms (He W, Xu W et al. 2018 ) (Alazab M
et al. 2019 ). However, traditional signature-based
intrusion detection systems (IDSs) have difficulty
keeping up with the increasing appearance of novel
attack techniques (Qiu M et al. 2020). Additionally,
these systems rely on predefined patterns, which are
not effective against zero-day attacks or attacks that
evade signature detection (Qiu M et al. 2020).
Therefore, such adaptive and intelligent anomaly
detection systems are needed (Qiu M et al. 2020).
Anomaly detection in network traffic has been
successfully realized with ML techniques (Chen X,
Zhang Z et al. 2019), (Qiu M, Hu X et al. 2021).
Given this, ML algorithms can also learn patterns in
historical data, and identify deviations from normal
behavior, utilizing this as a way of detecting known
and unknown attacks (Chen X, Zhang Z et al. 2019).
With good performance in anomaly detection, DL
models, in

particular, have been shown to be able to learn
complex features from raw data (Qiu M, Hu X et al.
2021) automatically, (He W,Xu W et al. 2020). The
success of Convolutional Neural Networks (CNNs)
in image-like representations of network traffic, as
well as the ability of Recurrent Neural Networks
(RNNs, e.g. Long Short Term Memory (LSTM)
(Chen X, Zhang Z et al. 2019), and Gated Recurrent
Units (GRUs) (Qiu M, Hu X et al. 2021), (He W,Xu
W et al. 2020)), to work with sequential data,
suggests that they may also be applied to network
traffic. Nevertheless, most such methods (especially
deep learning types)

require substantial amounts of labeled data for
training which can be time-consuming and costly to
collect [20]. Additionally, many of the popular ML-
based anomaly detection systems are centralized,
which are inherently high-risk in terms of privacy,
particularly in the IoT and IloT domains where
sensitive data are often collected and

processed [21].

2.3 Gated Recurrent Units (GRUs) for Time-
Series Data

Recurrent Neural Networks (RNNs) are a class of
neural networks that are good at
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processing sequential data such as network traffic
(Chen X, Zhang Z et al. 2019), (Qiu M, Hu X et al.
2021), (He W, Xu W et al. 2020). One of the features
of RNNSs is that they can maintain an internal state
(that stores information about the previous time
steps) (Chen X, Zhang Z et al. 2019), (Qiu M, Hu X
et al. 2021), (He W, Xu W et al. 2020) and
consequently be wused to model temporal
dependencies from these longterm patterns.
Standard RNNs, however, can suffer from the
vanishing gradient problem (Chen X, Zhang Z et al.
2019), (Qiu M, Hu X et al. 2021), (He W, Xu W et
al. 2020) making it hard to learn long-term
dependencies.

Advanced RNN architectures — Gated Recurrent
Units (GRUs) and Long Short

Term Memory (LSTM) networks — are designed to
bypass the vanishing gradient problem as
introduced in (Chen X, Zhang Z et al. 2019), (Qiu
M, Hu X et al. 2021), (He W, Xu W et al. 2020).
Specificallyy, GRUs are well known to be
computationally efficient and to be effective at
capturing temporal dependencies (Chen X, Zhang Z
et al. 2019), (Qiu M, Hu X et al. 2021), (He W,Xu
W et al. 2020). Through the use of gating
mechanisms that control the flow of information in
the network, they are able to selectively remember
or forget information that occurred at previous time
steps (Chen X, Zhang Z et al. 2019), (Qiu M, Hu X
et al. 2021), (He W, Xu W et al. 2020). GRUs are
well suited for anomaly detection in network traffic,
as the ability to model temporal dependencies
effectively is crucial for detecting subtle temporal
patterns that are important for detecting malicious
activities (Chen X, Zhang Z et al. 2019), (Qiu M, Hu
Xetal. 2021), (He W, Xu W et al. 2020). GRUs have
been shown to work well for anomaly detection in
numerous studies for many different applications,
such as network security (Purohit S et al. 2024 ), (Li
F, Shinde A et al. 2019 ), (He W, Xu W et al. 2018
), Noura S, Alwadani et al. 2021 ), Zhang Z, Chen
L (2021), (Yin Y, Zhang Y et al. 2020), (He W,Xu
W et al. 2020).

2.4 The EdgelloTset Dataset: A Realistic
Benchmark

In this research, the Edge-IloTset dataset (Liu Y, Li
X et al. 2020), (Hernandex-C ] et al. 2020) serves a

key role in the performance evaluation of the

proposed federated learning framework, as it is a
realistic and comprehensive benchmark. However,
existing datasets are often not diverse or realistic
enough to properly evaluate the effectiveness of
anomaly detection systems in IoT and IloT
environments (Liu Y, Li X et al. 2020), (Hernandex-
C J et al. 2020). To address these limitations, the
Edge-IloTset dataset provides a rich and detailed
representation of real-world network traffic patterns
and attack scenarios (Liu Y, Li X et al. 2020),
(Hernandex-C J et al. 2020), (Wang C et al. 2020).

The dataset consists of data from various IoT and
[IoT devices, including sensors, actuators, and
network components (Liu Y, Li X et al. 2020),
(Hernandex-C ] et al. 2020). This diversity
guarantees that the dataset is, in a sense,
representative of the heterogeneous nature of loT
and IIoT networks, and thus is a more robust and
reliable benchmark for anomaly detection system
evaluation (Liu Y, Li X et al. 2020), (Hernandex-C ]
et al. 2020), (Wang C et al. 2020). Additionally,
EdgelloTset simulated data for fourteen
cyberattacks of various types in five major threat
categories (Liu Y, Li X et al. 2020), (Hernandex-C ]
et al. 2020). The wide range of attacks permits a
thorough evaluation of the proposed system’s
capacity to detect various kinds of malicious
activities (Liu Y, Li X et al. 2020) (Hernandex-C J et
al. 2020) (Wang C et al. 2020). The feature set of
the dataset is also rich, including network traffic,
system logs, and device-specific metrics (Liu Y, Li X
et al. 2020), (Hernandex-C J et al. 2020), which
allows the development and evaluation of
sophisticated anomaly detection models (Liu Y, Li
X et al. 2020), (Hernandex-C J et al. 2020), (Wang
C et al. 2020). With the public availability of Edge-
[IoTset, reproducibility and comparison of different
anomaly detection approaches (Liu Y, Li X et al.
2020), (Hernandex-C ] et al. 2020), (Wang C et al.
2020) are promoted.

3. Methodology

3.1 Data Acquisition and Preprocessing

The EdgelloTset dataset (Rathore et al. 2020),
(Fathi S et al. 2020) is used as a base for this
research. Due to the extensive coverage of different
[oT/1loT devices and attack scenarios in the dataset,
the proposed anomaly detection system can be
thoroughly and realistically evaluated. Before
training our model, we went through a highly
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complicated preprocessing pipeline to make sure
our data quality is excellent and consistent. This
pipeline comprises the following key stages:

Data Cleaning: Firstly, we identified what are the
missing values and outliers in the data set. The
missing values are imputed using means/medians
techniques or more sophisticated techniques like k
Nearest Neighbors imputation, the outliers are
handled by capping, winsorization, or removal
based on how much they skew the analysis.

Feature Scaling and Normalization: The features
are scaled and normalized to make sure that features
with very large values do not unduly affect the
learning process as well as to accelerate the training
speed of the training algorithms. Min-max scaling,
Zscore normalization, and robust scaling are
common normalization techniques. This

method is chosen based on the distribution of the
data and the certain requirements of the model.
Feature Selection: Dimensionality reduction
techniques, which select the most relevant features
to enhance model efficiency while mitigating
overfitting, are applied to the data in order to
improve anomaly detection. The feature selection
methods considered in this work include filter
methods  (e.g., variance threshold, mutual
information, Chi-square, ANOVA), wrapper
methods (e.g., recursive feature elimination), and
embedded methods (e.g., L1 regularization)(Gupta
A, etal. 2020).Through experimentation and model
performance evaluation, the best feature selection
method is identified.

Data Splitting:Using stratified sampling, the
preprocessed data was divided into

‘ Acquire Edge-lloTset Datasat ‘

‘ Foature Scaling & ‘

Faature Selactian

Data Splitting

Fig 1. Data acquisition and preprocessing

training, validation, and testing sets. The use of
stratified sampling guarantees that the class
distribution (normal vs anomaly traffic) remains
unchanged in all three sets and prevents bias in the
evaluation of the performance of the anomaly
detection systems. The split proportions are selected
on specific split proportions (i.e., 80% training,
10% validation, and 10% testing), but these splits
can be changed depending on the size of your
dataset and the computational resources available to
you.

3.2 Model Development: GRU Architecture and
Hyperparameter

Tuning

A GRU-based model is the core of the proposed
anomaly detection system. Since GRUs have been
proven to effectively capture temporal dependencies
in sequential data, which

is a key characteristic for anomaly detection in
network traffic (Qiu M et al. 2020), (He W,Xu W et
al. 2020), (Alrashdi A et al. 2021), we choose GRUE .
The GRU architecture is constructed to learn cute
temporal patterns in the network traffic data and
discriminate between normal and anomalous
behavior correctly.
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Start: GRU-Based Model
Development

l

Construct GRU Architecture

Experiment with Number of
Layers

‘ Adjust Number of Hidden Units ‘

Set Di t Rats
=

Choose Activation Functions ‘

Select Optimizer and Learning

\\

g

Validate for Overfitting and
Underfitting

l

Optimize Hyperparameters
using Grid/Random/Bayes
Search

l

Validate on Edge-lloTset
Dataset

l

End: Optimized GRU Model ‘

Fig 2 GRU

The architecture’s key parameters, determined
through experimentation and hyperparameter
tuning, include:

Number of Layers: A problem is that the capacity
of the GRU network (number of layers) in learning
the complex pattern trends varies with the GRU
network depth. A deeper network of GRU can
potentially capture more nuanced relationships, but
this leads to increased computational complexity
and the risk of overfitting.

Number of Hidden Units: Because the number of
hidden units in each GRU

layer determines the model’s capacity to represent
the input data, we shall keep

increasing this number until it begins to get overfit.
Gaining the ability of the model to learn complex
patterns can be done by increasing the number of
hidden units, but there is more than a penalty; this
increases computational cost and makes it more
likely to

overfit.

Activation Functions: This does not only let us
construct the GRU network as a non-linearity while
being able to learn non-trivial relationships in data.
Well-known activation functions we

Model Development

commonly encounter are sigmoid, tanh, and ReLU.
By experimentation, the optimum activation
function is determined.

Dropout Rate: It’s a regularization technique that
prevents overfitting by simply dropping out neurons
in each iteration/network while training.
Hyperparameters controlling the proportion of
neurons dropped out are the dropout rate.
Optimizer and Learning Rate: Optimizer
algorithm (Adam, RMSprop, SGD) choice and the
learning rate affect model training speed and
convergence very much. For instance, Adam is used
often for its adaptive learning rate; while in case of
properly tuning SGD can be useful.

Through a rigorous procedure of experimentation
and validation, the Edge-lioTset dataset is used to
determine what optimizes these hyperparameters.
Grid Search,random search, or Bayes optimization
techniques can be used for exploring the
hyperparameter space of the GRU model
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3.3 Federated Learning Framework
Implementation: A Decentralized

Approach

In (Jia X,Yao L et al. 2020), (Buczak AL et al. 2016),
(Wang C et al. 2020), a federated learning

framework is proposed to distribute the training
process across multiple edge devices. The

decentralized approach proposed here directly
addresses the scalability and privacy concerns
inherent in centralized training. The framework is
composed of a central server and multiple edge
devices, and each edge device owns a subset of the
Edge-IloTset dataset. The training process follows
these

Central Server & Edge Devices

Local Training on Edge Devices

4

Aggregate Model Updates on
Central Server

\

Update and Distribute Global
Model

Secure Communication

Fig 3 Federated Learning Framework

Steps:

Local Training: A separate local GRU model is
trained independently by each edge device on its
assigned subset of data. This independent training
guarantees that the sensitive data stays on particular
devices, and is not shared directly with the central
server or other devices.

Model Update Aggregation: Following each local
training epoch or round, each

edge device only sends the updated model
parameters (e.g., weights and biases), to the central
server. These are aggregated by the central server to
obtain a global model. The aggregation method
used, e.g., FedAvg aggregates the model updates
from all participating devices, or we select more
sophisticated methods depending on the data
properties and the need to overcome the potential
adversarial attacks.

Global Model Dissemination: The global model is
updated on the central server,

and then distributed back to the edge devices. The
global model parameters are received by each edge
device and each edge device updates its local model
with these received global model parameters.
Iterative Process: For each round, we repeat steps 1-
3 iteratively, so that the

global model can progressively improve its
performance. Through this iterative process, the
network can continuously learn and adapt to the
changing network conditions.

We carefully design the federated learning
framework for robustness and efficiency. The client
selection strategies are then implemented to obtain
the best training schedule and to address possible
communication constraints. To deal with the data
heterogeneity across different edge devices and to
counter the effects of possible malicious actors,
robust aggregation techniques are employed.
Integrity and confidentiality of model updates are
secured through security mechanisms which are
incorporated to protect the model updates
transmission between the edge devices and central
server. A suitable distributed computing framework
is used to implement the framework such that
communication and coordination between the
central server and the edge devices are efficient.
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4 Experimental Setup

4.1 Dataset Splitting and Distribution: IID and
Non-IID Scenarios

The train, validate and test sets from the Edge-

[IoTset dataset (Rathore et al. 2020), (Fathi S et al.
2020) are stratified sampled to retain the class

Edge-lloTset Dataset
v

Train, Validate. Test Sets

v

Stratified Sampling to Retain
Class Distribution

11D Scenario
R it /i

Training Dalasel Sph for
Federated Learning

Relatively Homogeneous
Network Environmant

W ..

Samo Distribution of Data Sent
to Each Edge Device

v

Ideal Scenario to Evaluate
Federaled Learning
Performance

distribution on the sets. For federated learning
experiments, the training dataset is split even more
into subsets that are assigned to simulated edge
devices. Two distinct data distribution scenarios are
considered:

Subsets Assigned to Simulated
Edge Devices

Non-IID Beenario

Heterogeneous Network
Environment

N —

Differant Data Distribution for
Each Edge Device

[

Evaluating Robustness Against
Data Imbalances and Variations

Fig 4 Data Splitting and Distribution

IID (Independent and Identically Distributed): A
relatively homogeneous network environment is
simulated by sending the same distribution of data
to each edge device. The ideal scenario is used as a
baseline to evaluate the federated learning
framework performance.

IID (Independent and Identically Distributed): A
relatively homogeneousnetwork environment is
simulated by sending the same distribution of data
to each edgedevice. The ideal scenario is used as a
baseline to evaluate the federated learning
framework performance.

Non-lID (Non-Independent and Non-Identically
Distributed):

In a more realistic and heterogeneous network
environment, each edge device receives a different
distribution of data. This scenario is to evaluate
the robustness of the federated learning

framework against data imbalances and
variations on different devices. The non-IID
setting, while extreme, approximates the diversity
of data in realworld IoT and IloT networks
where devices produce different types and

amounts of data.

4.2 Class Distribution

The data had been divided into seven major classes.
The majority of the instance belongs to the
"Benign” class, which has almost 500,000 entries
in it.On the other hand, we can clearly see other
categories  like  "DoS  slowhttptest”  or
"Heartbleed” have few entries which leads to
imbalance in our distribution of the dataset. To
mitigate this imbalance we will introduce
strategies regularization in our methodology,
which will ensure effective model training and
evaluation.
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Class Distribution

300000

400000

300000

Count

200000

100000

Benign
Labels

DoS slowloris DoS Slowhttptest DoS Hulk  DoS GoldenEye Heartbleed

DDoS

Fig 5 Class Distribution

We have also created a correlation heatmap of the
packet attributes for comparison as shown in Fig
5.

4.3 Model Training Parameters: Optimizing
GRU Performance

During training the GRU models optimize
performance by tuning several hyperparameters.
These hyperparameters include:

Fiwg Avg Packets/Bulk
Bl AVQ Byes/BUIK -
Bwdl Avg Bulk Rate -
Susflow Fwd Bytos

g
2

Optimizer: Training speed and convergence are
heavily dependent on the choice of the optimizer
algorithm ( e.g. Adam, SGD). The major reason
behind Adam’s popularity is because of its
adaptive learning rate while SGD works nicely
with the right tuning.

Fig 6 Correlation Heatmap

Learning Rate: During weight updates we have
our learning rate, which is the step size. A smaller
learning rate means slower convergence but more
stable, larger learning leads to faster convergence,
but can also oscillate or diverge.

Batch Size: Determination of the batch size can
be understood as the number of samples we
process before updating the weights of the model.
Smaller batch sizes can be noisier, but not as likely
to update more and less memory; larger batch

sizes can keep the updates stable, but cost more
memory.

Number of Epochs: That means the more
epochs, the more the complete training dataset
will be passed by the model. Model accuracy
could be improved by having more epochs but it
takes a lot more time. They use early stopping
techniques, where they monitor their training
performance on a validation set and stop the
training prematurely, once their performance
plateaus and even declines.
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Regularization  Techniques: To  control
overfitting, and therefore improve generalization,
regularization methods are applied, such as
dropout, or weight decay. The weights are

penalized on the model’s loss function in a way

proportional to their magnitude, and dropout
randomly drops out neurons during training.
4.4 Evaluation Metrics: A Comprehensive
Assessment

The performance of the proposed anomaly
detection system is comprehensively evaluated

_ Slower Rate = More Stable
Learning Rate

Adaplive Leaming Rate

————»  Stable with Proper Tuning

Oplimizer

Balch Size

Fastar Rate = Risk of
Oscillation

Smaller Batch = Noisier

=

Larger Batch = More Stable,
Higher Memory

Mare Epochs = Btlor
Accuracy, More Time

Early Stopping = Prevents
Overtraining

o

Regularization

Prevents Overfiting

Dropout = Randormly Draps
Neurons

Waight Decay = Penalizes
Large Weights

Fig 7 Model Training Parameters

using a variety of standard machine learning
metrics:

Accuracy: The proportion of correctly classified
samples that the model’s predictions are overall
correct.

Precision: It is the ratio of correctly predicted
positive  instances predicted  positive
instances (the ability to prevent false positives).
Recall (Sensitivity): Ability to avoid false
negatives (proportion of correctly predicted
positive instances among all actual positive
instances).

F1-Score: It’s just a harmonic mean term:

over

precision and recall in balanced metrics.

AUC-ROC (Area Under the Receiver Operating
Characteristic Curve): One of the ways to capture
the model’s ability to distinguish normal and
anomalous traffic for different thresholds. The
bigger the AUC-ROC value means better the
discrimination capabilities.

Moreover, we evaluate the efficiency of the
federated learning framework w.r.t. training time,
communication overhead (how much data is
transferred from edge devices to the central
server), and resource usage on edge devices.
Relevance of evaluation metrics to anomaly
detection, and to the specific requirements for
IoT and IIoT security, guide
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Fig 8 Evaluation Metrics the choice of evaluation metrics

5 Results

5.1 Integrated Federated Learning and GRU
Model

The results of the implemented federated GRU
model for attack detection are summarized in two
visualizations:

Training Loss over Epochs:The graph in Fig 6
shows Training loss over epochs.The training loss

curve shows a fast decrease from approximately
4000 to nearly 1500 within the first two epochs
indicates rapid learning in early training, and it
continues to decrease stabilizing below 1000.
This demonstrates that the model converged well,
with little overfitting, even in a federated learning
setting.

Training Loss Over Epochs

Loss

2000

1500

1000

10 1 20

Fig 9 Training Loss over Ephocs

Model Performance Metrics: At the bottom, the
bar chart displays the model’s evaluation metrics
which are 1.0 for Accuracy, Precision, Recall and

F1 Score.

as 50

Consequently, the results obtained from the
federated GRU model indicate that it achieved
both high classification accuracy and balanced
performance in predicting the target classes.
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Model Performance Metrics

sion

curacy
i

Recall
F1 Score

%
Fig 10 Model Performance Matrics

these results demonstrate the

Together,
effectiveness of the proposed federated GRU
based framework for attack detection
distributed data context, as it is able to robustly
and precisely perform the task.

in a

5.2 Confusion Matrix

Fig 10 shows our model prediction for the seven
classes defined earlier. This shows the number of
predictions made for each class; true positive,
false positive, true negative, false negative.

For this matrix the diagonal values represent
correct predictions per class, i.e. how many

Confusion Matrix

instances of each class got correctly classified. For
instance, for the class O (Benign), the model
correctly identified 96,006 instances, and the
class 1 (DoS slowloris), the model correctly
identified 25,453. In contrast, off-diagonal values
show misclassifications. For example, class O
(Benign) misclassifies some of its instances, for
example 778 instances that are predicted as class
3 (DoS Hulk).

The model generally has a good accuracy for the
majority class (Benign) but suffers a degree of
misclassification for less frequently occurring
classes data.
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Fig 11 Confusion Metrics

5.3 Federated GRU against Centralized Models
As discussed earlier in the paper, our approach
showed remarkable results despite being
decentralized. We have seen the training loss of
Federated GRU model decreases sharply during
the initial epochs and then stabilized nearly at
zero, which demonstrates efficient learning and
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convergence. We also have seen how Federated
GRU achieved the perfect score of 1.0 for
performance metrics, including
Accuracy,Precision, Recall and F1 Score. Below
are the results in which we tested our approach
against some famous ML models which are
centralized.
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i. Logistic Regression: The two models were on the same time, the Federated GRU model is

par on this task when compared side by side. At designed for distributed data settings where

Model Comparisan Metrics
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Fig 12 GRU-Based Federated Learning vs Logistic Regression

collecting centralized data may not be feasible ii.Centralized MLP: It performed identically in
because of privacy or scalability reasons. terms of metrics, but our approach

Model Comparison Metrics
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Fig 13 FL-GRU Based vs Centralized MLP

allows an edge for the distributed environments Based Federated learning performed exact same
where centralized data aggregation is difficult or result. As mentioned again earlier we have seen
infeasible due to privacy concerns. that GRU-Based FL performs exceptionally well
iii. BiLSTM and Random Forest: When tested in a decentralized environment and suitable for
against BiLSTM and Random Forest, GRU- the siutaions where privacy is the main concern.

Model Comparison Metrics
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Fig 14 BiLSTM and Random Forest
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6 Conclsion and Future Work

Based on the Edge-IloTset dataset, this research
introduced a novel federated learning framework
for distributed anomaly detection in network
traffic that employs

GRU-based models. Illustrative examples of the
experimental results (above) confirm the
effectiveness of the proposed approach in terms
of high accuracy, and efficiency while ensuring
data privacy. With the GRU models, we
demonstrate that temporal dependencies in
network traffic data can be effectively captured,
and the federated learning framework, can help
scale the training process by distributing it across
multiple edge devices, alleviating privacy
concerns.

It was found that the proposed system offers a
significant advantage in terms of data
heterogeneity handling and high performance in
the presence of non-IID data distribution. The
federated learning framework is compared to
centralized approaches, and it proves the efficacy
of the federated learning framework in achieving
comparable or better accuracy than centralized
approaches while controlling the risks of
centralized data aggregation.

Further research into more sophisticated GRU
architectures, say, with attention mechanisms or
hierarchical structures, (Wang C et al. 2020),
(Purohit S, Govindarasu et al. 2021), may be of
interest. Further optimizing the training process
and improving model performance, could be
accomplished by investigating alternative
federated learning aggregation methods and
client selection strategies. Another important
direction for future research is the development
of robust defense mechanisms against adversarial
attacks in the federated learning setting (Zhao Y
etal. 2021) and (Alazab M et al. 2019 ). Moreover,
the framework could be extended to be applicable
to more complex attack scenarios and other data
sources (Purohit S, Govindarasu et al. 2021).
Also, one area for exploration could be in terms
of using the Explainable Al (XAI) techniques
which can be useful to understand how the model

uses what it predicts during the anomaly
detection process (Zhao F,Liu Y et al. 2020).
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