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 Abstract 

This work introduces a novel GRU-based federated learning approach for anomaly 
detection in network traffic. Our decentralized method effectively addresses privacy 
concerns and constraints that prevent centralized servers. Supported by extensive 
experiments and comparisons, it demonstrates strong performance in detecting 
anomalies across distributed environments. 
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INTRODUCTION 
The increase in interconnectedness of the IoT 
ecosystem has led to the creation of robust security 
mechanisms that are required to minimize the risk 
of cyber-attacks in IoT as well as in IIoT ecosystems. 
Machine learning (ML) based network traffic 
anomaly detection, which promises to detect 
malicious activities and protect critical 
infrastructure (Purohit S et al. 2024 ), has emerged 
as a powerful approach. However, data privacy and 
protection (He W, Xu W et al. 2018 ) can be 
compromised by using normal ML strategies that 
rely on regular data storage and processing. The 
appealing part of Federated Learning is that we can 
train a model together but without sharing raw data 
(Noura S, Alwadani et al. 2021 ), (He W, Xu W et 
al. 2018 ), (Alazab M et al. 2019 ). In FL, each device 
trains local models on its own data, and then only 

updates the model on the central server without 
revealing its sensitive information. The data 
generated and processed by resource-constrained 
edge devices is one of the nice things about this 
decentralized approach and has a use case for IoT 
and IIoT. We present in this paper how the 
technique of federated learning can be used to solve 
the detection of anomalies in network traffic and in 
particular the use of Gated Recurrent Units (GRUs) 
Zhang Z, Chen L ( 2021 ), (Yang Z, Chen L et al. 
2021), (Chen X, Zhang Z et al. 2019) a form of 
recurrent neural network (RNN) designed to 
process time series. One of the best abilities of 
GRUs is the ability to learn and extract temporal 
dependencies and patterns in sequential data and 
this property makes them very suitable for the 
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analysis of network traffic flows and for the 
detection of anomalies that can be signals of abusive 
behavior. A combination of federated learning and 
GRU-based models provides a strong and privacy-
protected way to improve the security of IoT and 
IIoT networks. 
 
2. Literature Review 
2.1 Anomaly Detection in IoT and IIoT Networks 
The rapid growth of IoT and IIoT devices has 
increased dramatically the complexity and scale of 
network traffic (Purohit S et al. 2024 ), (Li F, Shinde 
A et al. 2019 ). Such an increase poses a big problem 
for the traditional security mechanisms which 
demand more sophisticated anomaly detection 
mechanisms (He W, Xu W et al. 2018 ) (Alazab M 
et al. 2019 ). However, traditional signature-based 
intrusion detection systems (IDSs) have difficulty 
keeping with the increasing appearance of novel 
attack techniques (Qiu M et al. 2020). Additionally, 
these systems rely on predefined patterns, which are 
not effective against zero-day attacks or attacks that 
evade signature detection (Qiu M et al. 2020). 
Therefore, such adaptive and intelligent anomaly 
detection systems are needed (Qiu M et al. 2020). 
Anomaly detection in network traffic has been 
successfully realized with ML techniques (Chen X, 
Zhang Z et al. 2019), (Qiu M, Hu X et al. 2021). 
Given this, ML algorithms can also learn patterns in 
historical data, and identify deviations from normal 
behavior, utilizing this as a way of detecting known 
and unknown attacks (Chen X, Zhang Z et al. 2019). 
With good performance in anomaly detection, DL 
models, in particular, have been shown to be able to 
learn complex features from raw data (Qiu M, Hu X 
et al. 2021) automatically, (He W,Xu W et al. 2020). 
The success of Convolutional Neural Networks 
(CNNs) in image-like representations of network 
traffic, as well as the ability of Recurrent Neural 
Networks (RNNs, e.g. Long Short Term Memory 
(LSTM) (Chen X, Zhang Z et al. 2019), and Gated 
Recurrent Units (GRUs) (Qiu M, Hu X et al. 2021), 
(He W,Xu W et al. 2020)), to work with sequential 
data, suggests that they may also be applied to 
network traffic. Nevertheless, most such methods 
(especially deep learning types) require substantial 

amounts of labeled data for training which can be 
time-consuming 
and costly to collect (Alazab M et al. 2019 ). 
Additionally, many of the popular ML-based 
anomaly 
detection systems are centralized, which are 
inherently high-risk in terms of privacy, particularly 
in the IoT and IIoT domains where sensitive data 
are often collected and processed (Noura S et 
al.2021 , Zhang Z .Chen L et al. 2021). 
 
2.2 Federated Learning for Enhanced Privacy 
The rapid growth of IoT and IIoT devices has 
increased dramatically the complexity and scale of 
network traffic (Purohit S et al. 2024 ), (Li F, Shinde 
A et al. 2019 ). Such an increase poses a big problem 
for the traditional security mechanisms which 
demand more sophisticated anomaly detection 
mechanisms (He W, Xu W et al. 2018 ) (Alazab M 
et al. 2019 ). However, traditional signature-based 
intrusion detection systems (IDSs) have difficulty 
keeping up with the increasing appearance of novel 
attack techniques (Qiu M et al. 2020). Additionally, 
these systems rely on predefined patterns, which are 
not effective against zero-day attacks or attacks that 
evade signature detection (Qiu M et al. 2020). 
Therefore, such adaptive and intelligent anomaly 
detection systems are needed (Qiu M et al. 2020). 
Anomaly detection in network traffic has been 
successfully realized with ML techniques (Chen X, 
Zhang Z et al. 2019), (Qiu M, Hu X et al. 2021). 
Given this, ML algorithms can also learn patterns in 
historical data, and identify deviations from normal 
behavior, utilizing this as a way of detecting known 
and unknown attacks (Chen X, Zhang Z et al. 2019). 
With good performance in anomaly detection, DL 
models, in 
particular, have been shown to be able to learn 
complex features from raw data (Qiu M, Hu X et al. 
2021) automatically, (He W,Xu W et al. 2020). The 
success of Convolutional Neural Networks (CNNs) 
in image-like representations of network traffic, as 
well as the ability of Recurrent Neural Networks 
(RNNs, e.g. Long Short Term Memory (LSTM) 
(Chen X, Zhang Z et al. 2019), and Gated Recurrent 
Units (GRUs) (Qiu M, Hu X et al. 2021), (He W,Xu 
W et al. 2020)), to work with sequential data, 
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suggests that they may also be applied to network 
traffic. Nevertheless, most such methods (especially 
deep learning types) 
require substantial amounts of labeled data for 
training which can be time-consuming and costly to 
collect (Alazab M et al. 2019 ). Additionally, many 
of the popular ML-based anomaly detection systems 
are centralized, which are inherently high-risk in 
terms of privacy, particularly in the IoT and IIoT 
domains where sensitive data are often collected 
and 
processed (Noura S et al.2021 , Zhang Z .Chen L et 
al. 2021). 
 
2.3 Gated Recurrent Units (GRUs) for Time-
Series Data 
Recurrent Neural Networks (RNNs) are a class of 
neural networks that are good at 
processing sequential data such as network traffic 
(Chen X, Zhang Z et al. 2019), (Qiu M, Hu X et al. 
2021), (He W,Xu W et al. 2020). One of the features 
of RNNs is that they can maintain an internal state 
(that stores information about the previous time 
steps) (Chen X, Zhang Z et al. 2019), (Qiu M, Hu X 
et al. 2021), (He W,Xu W et al. 2020) and 
consequently be used to model temporal 
dependencies from these long-term patterns. 
Standard RNNs, however, can suffer from the 
vanishing gradient problem (Chen X, Zhang Z et al. 
2019), (Qiu M, Hu X et al. 2021), (He W,Xu W et 
al. 2020) making it hard to learn long-term 
dependencies. 
Advanced RNN architectures — Gated Recurrent 
Units (GRUs) and Long Short 
Term Memory (LSTM) networks — are designed to 
bypass the vanishing gradient problem as 
introduced in (Chen X, Zhang Z et al. 2019), (Qiu 
M, Hu X et al. 2021), (He W,Xu W et al. 2020). 
Specifically, GRUs are well known to be 
computationally efficient and to be effective at 
capturing temporal dependencies (Chen X, Zhang Z 
et al. 2019), (Qiu M, Hu X et al. 2021), (He W,Xu 
W et al. 2020). Through the use of gating 
mechanisms that control the flow of information in 
the network, they are able to selectively remember 
or forget information that occurred at previous time 
steps (Chen X, Zhang Z et al. 2019), (Qiu M, Hu X 

et al. 2021), (He W,Xu W et al. 2020). GRUs are 
well suited for anomaly detection in network traffic, 
as the ability to model temporal dependencies 
effectively is crucial for detecting subtle temporal 
patterns that are important for detecting malicious 
activities (Chen X, Zhang Z et al. 2019), (Qiu M, Hu 
X et al. 2021), (He W,Xu W et al. 2020). GRUs have 
been shown to work well for anomaly detection in 
numerous studies for many different applications, 
such as network security (Purohit S et al. 2024 ), (Li 
F, Shinde A et al. 2019 ), (He W, Xu W et al. 2018 
), (Noura S, Alwadani et al. 2021 ), Zhang Z, Chen 
L ( 2021 ), (Yin Y, Zhang Y et al. 2020), (He W,Xu 
W et al. 2020). 
  
2.4 The Edge-IIoTset Dataset: A Realistic 
Benchmark 
In this research, the Edge-IIoTset dataset (Liu Y, Li 
X et al. 2020), (Hernandex-C J et al. 2020) serves a 
key role in the performance evaluation of the 
proposed federated learning framework, as it is a 
realistic and comprehensive benchmark. However, 
existing datasets are often not diverse or realistic 
enough to properly evaluate the effectiveness of 
anomaly detection systems in IoT and IIoT 
environments (Liu Y, Li X et al. 2020), (Hernandex-
C J et al. 2020). To address these limitations, the 
Edge-IIoTset dataset provides a rich and detailed 
representation of real-world network traffic patterns 
and attack scenarios (Liu Y, Li X et al. 2020), 
(Hernandex-C J et al. 2020), (Wang C et al. 2020).  
The dataset consists of data from various IoT and 
IIoT devices, including sensors, actuators, and 
network components (Liu Y, Li X et al. 2020), 
(Hernandex-C J et al. 2020). This diversity 
guarantees that the dataset is, in a sense, 
representative of the heterogeneous nature of IoT 
and IIoT networks, and thus is a more robust and 
reliable benchmark for anomaly detection system 
evaluation (Liu Y, Li X et al. 2020), (Hernandex-C J 
et al. 2020), (Wang C et al. 2020). Additionally, 
Edge-IIoTset simulated data for fourteen 
cyberattacks of various types in five major threat 
categories (Liu Y, Li X et al. 2020), (Hernandex-C J 
et al. 2020). The wide range of attacks permits a 
thorough evaluation of the proposed system’s 
capacity to detect various kinds of malicious 
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activities (Liu Y, Li X et al. 2020) (Hernandex-C J et 
al. 2020) (Wang C et al. 2020). The feature set of 
the dataset is also rich, including network traffic, 
system logs, and device-specific metrics (Liu Y, Li X 
et al. 2020), (Hernandex-C J et al. 2020), which 
allows the development and evaluation of 
sophisticated anomaly detection models (Liu Y, Li 
X et al. 2020), (Hernandex-C J et al. 2020), (Wang 
C et al. 2020). With the public availability of Edge-
IIoTset, reproducibility and comparison of different 
anomaly detection approaches (Liu Y, Li X et al. 
2020), (Hernandex-C J et al. 2020), (Wang C et al. 
2020) are promoted.  
 
3. Methodology  
3.1 Data Acquisition and Preprocessing 
 The Edge-IIoTset dataset (Rathore et al. 2020), 
(Fathi S et al. 2020) is used as a base for this 
research. Due to the extensive coverage of different 
IoT/IIoT devices and attack scenarios in the dataset, 
the proposed anomaly detection system can be 
thoroughly and realistically evaluated. Before 
training our model, we went through a highly 
complicated preprocessing pipeline to make sure 
our data quality is excellent and consistent. This 
pipeline comprises the following key stages: 
Data Cleaning: Firstly, we identified what are the 
missing values and outliers in the data set. The 
missing values are imputed using means/medians 
techniques or more sophisticated techniques like k 
Nearest Neighbors imputation, the outliers are 
handled by capping, winsorization, or removal 
based on how much they skew the analysis. 
Feature Scaling and Normalization: The features 
are scaled and normalized to make sure that features 
with very large values do not unduly affect the 
learning process as well as to accelerate the training 
speed of the training algorithms. Min-max scaling, 
Z-score normalization, and robust scaling are 
common normalization techniques. This 
method is chosen based on the distribution of the 
data and the certain requirements of the model. 
Feature Selection: Dimensionality reduction 
techniques, which select the most relevant features 
to enhance model efficiency while mitigating 
overfitting, are applied to the data in order to 
improve anomaly detection. The feature selection 

methods considered in this work include filter 
methods (e.g., variance threshold, mutual 
information, Chi-square, ANOVA), wrapper 
methods (e.g., recursive feature elimination), and 
embedded methods (e.g., L1 regularization)(Gupta 
A, et al. 2020).Through experimentation and model 
performance evaluation, the best feature selection 
method is identified. 
Data Splitting:Using stratified sampling, the 
preprocessed data was divided into 
training, validation, and testing sets. The use of 
stratified sampling guarantees that the class 
distribution (normal vs anomaly traffic) remains 
unchanged in all three sets and prevents bias in the 
evaluation of the performance of the anomaly 
detection systems. The split proportions are selected 
on specific split proportions (i.e., 80% training, 
10% validation, and 10% testing), but these splits 
can be changed depending on the size of your 
dataset and the computational resources available to 
you. 

         Fig 1. Data acquisition and preprocessing 
 

3.2 Model Development: GRU Architecture and 
Hyperparameter 
Tuning 
A GRU-based model is the core of the proposed 
anomaly detection system. Since GRUs have been 
proven to effectively capture temporal dependencies 
in sequential data, which 
is a key characteristic for anomaly detection in 
network traffic (Qiu M et al. 2020), (He W,Xu W et 
al. 2020), (Alrashdi A et al. 2021), we choose GRUs. 
The GRU architecture is constructed to learn cute 
temporal patterns in the network traffic data and 
discriminate between normal and anomalous 
behavior correctly. 
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                                                            Fig 2 GRU  
 
The architecture’s key parameters, determined 
through experimentation and hyperparameter 
tuning, include: 
Number of Layers: A problem is that the capacity 
of the GRU network (number of layers) in learning 
the complex pattern trends varies with the GRU 
network depth. A deeper network of GRU can 
potentially capture more nuanced relationships, but 
this leads to increased computational complexity 
and the risk of overfitting. 
Number of Hidden Units: Because the number of 
hidden units in each GRU 
layer determines the model’s capacity to represent 
the input data, we shall keep 
increasing this number until it begins to get overfit. 
Gaining the ability of the model to learn complex 
patterns can be done by increasing the number of 
hidden units, but there is more than a penalty; this 
increases computational cost and makes it more 
likely to 
overfit. 
Activation Functions: This does not only let us 
construct the GRU network as a non-linearity while 

being able to learn non-trivial relationships in data. 
Well-known activation functions we  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model Development 
 
commonly encounter are sigmoid, tanh, and ReLU. 
By experimentation, the optimum activation 
function is determined. 
Dropout Rate: It’s a regularization technique that 
prevents overfitting by simply dropping out neurons 
in each iteration/network while training. 
Hyperparameters controlling the proportion of 
neurons dropped out are the dropout rate. 
Optimizer and Learning Rate: Optimizer 
algorithm (Adam, RMSprop, SGD) choice and the 
learning rate affect model training speed and 
convergence very much. For instance, Adam is used 
often for its adaptive learning rate; while in case of 
properly tuning SGD can be useful.  
Through a rigorous procedure of experimentation 
and validation, the Edge-IioTset dataset is used to 
determine what optimizes these hyperparameters. 
Grid Search,random search, or Bayes optimization 
techniques can be used for exploring the 
hyperparameter space of the GRU model 
 
3.3 Federated Learning Framework 
Implementation: A Decentralized 
Approach 
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In (Jia X,Yao L et al. 2020), (Buczak AL et al. 2016), 
(Wang C et al. 2020), a federated learning 
framework is proposed to distribute the training 
process across multiple edge devices. The 
decentralized approach proposed here directly 
addresses the scalability and privacy concerns 
inherent in centralized training. The framework is 
composed of a central server and multiple edge 
devices, and each edge device owns a subset of the 
Edge-IIoTset dataset. The training process follows 
these 
steps: 

 
Fig 3 Federated Learning Framework 

 
Local Training: A separate local GRU model is 
trained independently by each edge device on its 
assigned subset of data. This independent training 
guarantees that the sensitive data stays on particular 
devices, and is not shared directly with the central 
server or other devices. 
Model Update Aggregation: Following each local 
training epoch or round, each 
edge device only sends the updated model 
parameters (e.g., weights and biases), to the central 
server. These are aggregated by the central server to 
obtain a global model. The aggregation method 
used, e.g., FedAvg aggregates the model updates 
from all participating devices, or we select more 
sophisticated methods depending on the data 
properties and the need to overcome the potential 
adversarial attacks. 

Global Model Dissemination: The global model is 
updated on the central server, 
and then distributed back to the edge devices. The 
global model parameters are received by each edge 
device and each edge device updates its local model 
with these received global model parameters. 
Iterative Process: For each round, we repeat steps 1-
3 iteratively, so that the 
global model can progressively improve its 
performance. Through this iterative process, the 
network can continuously learn and adapt to the 
changing network conditions. 
We carefully design the federated learning 
framework for robustness and efficiency. The client 
selection strategies are then implemented to obtain 
the best training schedule and to address possible 
communication constraints. To deal with the data 
heterogeneity across different edge devices and to 
counter the effects of possible malicious actors, 
robust aggregation techniques are employed. 
Integrity and confidentiality of model updates are 
secured through security mechanisms which are 
incorporated to protect the model updates 
transmission between the edge devices and central 
server. A suitable distributed computing framework 
is used to implement the framework such that 
communication and coordination between the 
central server and the edge devices are efficient. 
 
4 Experimental Setup 
4.1 Dataset Splitting and Distribution: IID and 
Non-IID Scenarios 
The train, validate and test sets from the Edge-
IIoTset dataset (Rathore et al. 2020), (Fathi S et al. 
2020) are stratified sampled to retain the class 
distribution on the sets. For federated learning 
experiments, the training dataset is split even more 
into subsets that are assigned to simulated edge 
devices. Two distinct data distribution scenarios are 
considered:   
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IID (Independent and Identically Distributed): A 
relatively homogeneous network environment is 
simulated by sending the same distribution of data 
to each edge device. The ideal scenario is used as a 
baseline to evaluate the federated learning 
framework performance.  

 
Fig 4 Data Splitting and Distribution 

 
IID (Independent and Identically Distributed): A 
relatively homogeneousnetwork environment is 
simulated by sending the same distribution of data 
to each edgedevice. The ideal scenario is used as a 
baseline to evaluate the federated learning 
framework performance. 
Non-IID (Non-Independent and Non-Identically 
Distributed): 
In a more realistic and heterogeneous network 
environment, each edge device receives a different 
distribution of data. This scenario is to evaluate 
the robustness of the federated learning 
framework against data imbalances and 
variations on different devices. The non-IID 
setting, while extreme, approximates the diversity 
of data in real-world IoT and IIoT networks 
where devices produce different types and 
amounts of data. 

4.2 Class Distribution  
The data had been divided into seven major classes. 
The majority of the instance belongs to the 
”Benign” class, which has almost 500,000 entries 
in it.On the other hand, we can clearly see other 
categories like ”DoS slowhttptest” or 
”Heartbleed” have few entries which leads to 
imbalance in our distribution of the dataset. To 
mitigate this imbalance we will introduce 
strategies regularization in our methodology, 
which will ensure effective model training and 
evaluation. 
 

Fig 5 Class Distribution 
 
We have also created a correlation heatmap of the 
packet attributes for comparison as shown in Fig 
5. 
 
4.3 Model Training Parameters: Optimizing 
GRU Performance 
During training the GRU models optimize 
performance by tuning several hyperparameters. 
These hyperparameters include: 
Optimizer: Training speed and convergence are 
heavily dependent on the choice of the optimizer 
algorithm ( e.g. Adam, SGD). The major reason 
behind Adam’s popularity is because of its 
adaptive learning rate while SGD works nicely 
with the right tuning. 
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Fig 6 Correlation Heatmap 
 
Learning Rate: During weight updates we have 
our learning rate, which is the step size. A smaller 
learning rate means slower convergence but more 
stable, larger learning leads to faster convergence, 
but can also oscillate or diverge. 
Batch Size: Determination of the batch size can 
be understood as the number of samples we 
process before updating the weights of the model. 
Smaller batch sizes can be noisier, but not as likely 
to update more and less memory; larger batch 
sizes can keep the updates stable, but cost more 
memory. 
Number of Epochs: That means the more 
epochs, the more the complete training dataset 
will be passed by the model. Model accuracy 
could be improved by having more epochs but it 
takes a lot more time. They use early stopping 
techniques, where they monitor their training 
performance on a validation set and stop the 
training prematurely, once their performance 
plateaus and even declines. 
Regularization Techniques: To control 
overfitting, and therefore improve generalization, 
regularization methods are applied, such as 
dropout, or weight decay. The weights are 
penalized on the model’s loss function in a way 
proportional to their magnitude, and dropout 
randomly drops out neurons during training. 
4.4 Evaluation Metrics: A Comprehensive 
Assessment 

The performance of the proposed anomaly 
detection system is comprehensively evaluated  
 

Fig 7 Model Training Parameters 
using a variety of standard machine learning 
metrics: 
Accuracy: The proportion of correctly classified 
samples that the model’s predictions are overall 
correct. 
Precision: It is the ratio of correctly predicted 
positive instances over predicted positive 
instances (the ability to prevent false positives). 
Recall (Sensitivity): Ability to avoid false 
negatives (proportion of correctly predicted 
positive instances among all actual positive 
instances). 
F1-Score: It’s just a harmonic mean term: 
precision and recall in balanced metrics. 
 
 
AUC-ROC (Area Under the Receiver Operating 
Characteristic Curve): One of the ways to capture 
the model’s ability to distinguish normal and 
anomalous traffic for different thresholds. The 
bigger the AUC-ROC value means better the 
discrimination capabilities. 
Moreover, we evaluate the efficiency of the 
federated learning framework w.r.t. training time, 
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communication overhead (how much data is 

transferred from edge devices to the central 
server), and resource usage on edge devices. 
Relevance of evaluation metrics to anomaly 
detection, and to the specific requirements for 
IoT and IIoT security, guide the choice of 
evaluation metrics. 

Fig 8 Evaluation Metrics  
 

5 Results 
5.1 Integrated Federated Learning and GRU 
Model  
The results of the implemented federated GRU 
model for attack detection are summarized in two 
visualizations: 
  
Training Loss over Epochs:The graph in Fig 6 
shows Training loss over epochs.The training loss 
curve shows a fast decrease from approximately 
4000 to nearly 1500 within the first two epochs 
indicates rapid learning in early training, and it 
continues to decrease stabilizing below 1000. 
This demonstrates that the model converged well, 
with little overfitting, even in a federated learning 
setting. 
 

 

Fig 9 Training Loss over Ephocs 
Model Performance Metrics:At the bottom, the 
bar chart displays the model’s evaluation metrics 
which are 1.0 for Accuracy, Precision, Recall and 
F1 Score. 
Consequently, the results obtained from the 
federated GRU model indicate that it achieved 
both high classification accuracy and balanced 
performance in predicting the target classes. 
Together, these results demonstrate the 
effectiveness of the proposed federated GRU 
based framework for attack detection in a 
distributed data context, as it is able to robustly 
and precisely perform the task. 

Fig 10 Model Performance Matrics 
5.2 Confusion Matrix 
 
Fig 10 shows our model prediction for the seven 
classes defined earlier. This shows the number of 
predictions made for each class; true positive, 
false positive, true negative, false negative. 
  
For this matrix the diagonal values represent 
correct predictions per class, i.e. how many 
instances of each class got correctly classified. For 
instance, for the class 0 (Benign), the model 
correctly identified 96,006 instances, and the 
class 1 (DoS slowloris), the model correctly 
identified 25,453. In contrast, off-diagonal values 
show misclassifications. For example, class 0 
(Benign) misclassifies some of its instances, for 
example 778 instances that are predicted as class 
3 (DoS Hulk). 
The model generally has a good accuracy for the 
majority class (Benign) but suffers a degree of 
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misclassification for less frequently occurring 
classes data. 
 

Fig 11 Confusion Metrics  
5.3 Federated GRU against Centralized Models 
As discussed earlier in the paper, our approach 
showed remarkable results despite being 
decentralized. We have seen the training loss of 
Federated GRU model decreases sharply during 
the initial epochs and then stabilized nearly at 
zero, which demonstrates efficient learning and 
convergence. We also have seen how Federated 
GRU achieved the perfect score of 1.0 for 
performance metrics, including 
Accuracy,Precision, Recall and F1 Score. Below 
are the results in which we tested our approach 
against some famous ML models which are 
centralized. 
 
 
 
i. Logistic Regression: The two models were on 
par on this task when compared side by side. At 
the same time, the Federated GRU model is 
designed for distributed data settings where  

 
Fig 12 GRU-Based Federated Learning vs 

Logistic Regression 
collecting centralized data may not be feasible 
because of privacy or scalability reasons. 
ii.Centralized MLP: It performed identically in 
terms of metrics, but our approach 
allows an edge for the distributed environments 
where centralized data aggregation is difficult or 
infeasible due to privacy concerns. 

Fig 13 FL-GRU Based vs Centralized MLP 
iii.BiLSTM and Random Forest: When tested 
against BiLSTM and Random Forest, GRU-
Based Federated learning performed exact same 

result. As mentioned again earlier we have seen 
that GRU-Based FL performs exceptionally well 
in a decentralized environment and suitable for 
the siutaions where privacy is the main concern. 

 
Fig 14 BiLSTM and Random Forest 

6 Conclsion and Future Work 
Based on the Edge-IIoTset dataset, this research 
introduced a novel federated learning framework 
for distributed anomaly detection in network 
traffic that employs 
GRU-based models. Illustrative examples of the 
experimental results (above) confirm the 
effectiveness of the proposed approach in terms 
of high accuracy, and efficiency while ensuring 
data privacy. With the GRU models, we 
demonstrate that temporal dependencies in 
network traffic data can be effectively captured, 
and the federated learning framework, can help 
scale the training process by distributing it across 
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multiple edge devices, alleviating privacy 
concerns. 
It was found that the proposed system offers a 
significant advantage in terms of data 
heterogeneity handling and high performance in 
the presence of non-IID data distribution. The 
federated learning framework is compared to 
centralized approaches, and it proves the efficacy 
of the federated learning framework in achieving 
comparable or better accuracy than centralized 
approaches while controlling the risks of 
centralized data aggregation. 
Further research into more sophisticated GRU 
architectures, say, with attention mechanisms or 
hierarchical structures, (Wang C et al. 2020), 
(Purohit S, Govindarasu et al. 2021), may be of 
interest. Further optimizing the training process 
and improving model performance, could be 
accomplished by investigating alternative 
federated learning aggregation methods and 
client selection strategies. Another important 
direction for future research is the development 
of robust defense mechanisms against adversarial 
attacks in the federated learning setting (Zhao Y 
et al. 2021) and (Alazab M et al. 2019 ). Moreover, 
the framework could be extended to be applicable 
to more complex attack scenarios and other data 
sources (Purohit S, Govindarasu et al. 2021). 
Also, one area for exploration could be in terms 
of using the Explainable AI (XAI) techniques 
which can be useful to understand how the model 
uses what it predicts during the anomaly 
detection process (Zhao F,Liu Y et al. 2020). 
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